Present and future IGS Ionospheric products

Andrzej Krankowski, Manuel Hernández-Pajares, Joachim Feltens, Attila Komjathy, Stefan Schaer, Alberto García-Rigo, Pawel Wielgosz
Outline

- Introduction
- IGS IONO WG activities
- Current performance of IGS global TEC maps
- Updates and future plans
- Summary
IGS directly manages ~400 permanent GNSS stations observing 4-12 satellites at 30 s rate: more than 250,000 STEC observations/hour worldwide, but there is lack of stations at some areas (e.g., over the oceans)
The IGS Ionosphere Working group started its activities in June 1998 with the main goal of routinely producing IGS Global TEC maps. This is being done now with a latency of 11 days (final product) and with a latency of less than 24 hours (rapid product).

This has been done under the direct responsibility of the Iono-WG chairmans:

1. Dr. Joachim Feltens, ESA 1998–2002,
2. Dr. Manuel Hernández-Pajares, UPC, 2002–2007
3. Dr. Andrzej Krankowski, UWM, 2008–

The IGS ionosphere product is a result of the combination of TEC maps derived by different Analysis Centers by using weights computed by Validation Center, in order to get a more accurate product.
Determining VTEC in a global network:
main problem: lack of data - South and Oceans

It can be seen that the typical “holes” appearing at the first stage of the global maps computation (each 2 hours). This requires an optimum spatial-temporal interpolation technique to cover all the Ionosphere.

Lack of data over the equatorial Africa and Atlantic, and in part over equatorial and southern Pacific, hamper the detection of the equatorial anomalies (June 13, 2004).
4 Analysis Centers (CODE, ESA, JPL, and UPC) and a Validation Center (UPC) have been providing maps (at 2 hours x 5 deg. x 2.5 deg in UT x Lon. x Lat.), weights and external (altimetry-derived) TEC data.

From such maps and weights the Combination Center (at first ESA, then UPC, and since 2008 - UWM) has produced the IGS TEC maps in IONEX format.
Example of IGS RAPID GIM: 2010-141 DOY

TEC maps

RMS maps

Units: 0.1 TECUs

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
The IONEX format allows to store the VTEC and its error estimates in a grid format.

The IONEX (IONosphere inter EXchange) format allows to store the VTEC and its error estimates in a grid format.
Overall validation of VTEC maps during more than 10 years of IGS Iono WG operations

Example of comparison of IGS vs JASON: 2003-347

JASON dual frequency altimeter provides a direct and independent VTEC below its orbit (1300 km) over the oceans (the worst case for GPS).

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
Overall validation of VTEC maps during more than 10 years of IGS Iono WG operations.

Evolution of Global Electron Content during more than 10 years of IGS final VTEC maps.

Global Electron Content evolution during the availability of IGS Ionospheric products, since June 1998 (source: Final IGS VTEC maps).

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
IGS IONEX usage statistics for both final (IGSG) and rapid (IGRG) VTEC maps.

IGS rapid IONEX

IGS final IONEX

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
Current updates and future plans of IGS IWG

The following actions to be considered:

- Higher temporal resolution < 1 hour (asap)

- Predicted TEC maps - 1 and 2 days ahead
 - since October 2009 UPC and ESA have provide predicted maps
 - combined product to be started (end of 2010)

- The old procedures have been rewritten (perl) and currently running in parallel

- Cooperation with International Reference Ionosphere (IRI)

- Cooperation with National Central University (Taiwan) on application of COSMIC occultation data

- Space Weather monitoring over polar regions
Comparison of IRI Global TEC maps with IGS final GIMs

IRI

IGS IONEX

IGS IONEX - IRI (TECU)

IGS IONEX - IRI (%)

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
Comparison of IRI Global TEC maps with IGS final GIMs

IRI 2008 IGS IONEX

IGS IONEX - IRI (TECU)

IGS IONEX - IRI (%)

Krankowski et al.
FORMOSAT-3/COSMIC

- FORMOSAT-3/COSMIC Constellation was launched at 01:40 UTC, April 14, 2006 (Taiwan Time: April 15, 2006) at Vandenberg Air Force Base, CA. Minotaur Launch

- Maneuvered into six different orbital planes (inclination ~72°) for optimal global coverage (at ~800 km altitude).

- All satellites are in good health and providing science data.

Krankowski et al.
Occultation locations for COSMIC, 24 Hrs (28.03.2008)

1487 Matches

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
Comparison of IRI profiles with COSMIC and ionosonde data (DIAS)
Ex. Geomagnetic Disturbance in October 2008

Diurnal variations of TEC (red line) over DRES and ORID IGS GPS stations. The crossed line indicates variations of \((\text{foF2})^2/3\) over Juliusruh and Athens ionosondes. Blue line corresponds to the average TEC variation.
Comparison F3/ COSMIC electron density with IGS final TEC maps

9 October 2008 - quiet day
11 October 2008 - disturbed day

12 UT

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
Comparison F3/ COSMIC electron density with IGS final TEC maps

9 October 2008 - quiet day
11 October 2008 - disturbed day

Group 9 October 2008 - quiet day
11 October 2008 - disturbed day

14 UT

F3/COSMIC

Altitude (km)

Ne [10^4/cm^3]

350-400 km
300-350 km
250-300 km
200-250 km

IGS final IONEX

TEC (TECU)

Longitude

09.10.2008, 14 UT

11.10.2008, 14 UT

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
High latitude TEC fluctuations

For fast detecting phase fluctuation occurrence the rate of TEC (dTEC/dt) is more preferred:

\[
\text{ROT} = 9.52 \cdot 10^{16} \text{ el/m} \cdot (\Delta \Phi_i - \Delta \Phi_k)
\]

\[\Delta \Phi_{ki}\] - differential carrier phase sample with 30 sec interval

\[\Delta t = t_k - t_i = 1 \text{ min.}\]

As a measure of ionospheric activity we used also the Rate of TEC Index (ROTI) based on standard deviation of ROT:

\[
\text{ROTI} = \sqrt{\langle \text{ROT}^2 \rangle - \langle \text{ROT} \rangle^2}
\]
Oval of irregularities

Dynamic of the irregularity oval for quiet and disturbed days.
Summary of Iono WG activities

1. Long series of IGS VTEC maps offers a very good source of information about the ionosphere with high spatial and temporal resolution

2. Future improvements are determined by users’ requirements (the number of users has significantly increased during the last 10 years)

 A good example is the recent interest of ESA SMOS mission in using IGS final and predicted VTEC maps

3. 12 years of continuous time series of TEC measurements may be applied to update ionospheric models, e.g., IRI model

4. COSMIC occultation data gives a new opportunity to study/model the ionosphere and to validate IGS TEC maps

Krankowski et al.

IGS Workshop
28 June - 2 July 2010, Newcastle upon Tyne • England
5. A long time series of accurate global VTEC values are freely available since 1998 for scientific or technical use, with latencies of about 12 days (final product) or 1 day (rapid product). Thanks to the cooperative effort developed within the IGS framework and the international scientific community this open service will hopefully continue its evolution during the next years, sensitive to both new user needs and scientific achievements.