ORBEX

The Orbit Exchange Format

Draft Version 0.09

Sylvain Loyer
Oliver Montenbruck
Stephen Hilla

6 May 2019

Table of Contents

page

1. THE PHILOSOPHY OF ORBEX 3
2. GENERAL FORMAT DESCRIPTION 4
2.1 Header Lines 4
2.2 Header Blocks 5
2.3 The EPHEMERIS/DATA Block 6
2.4 Additional Formatting Tips 7
3. FORMATS FOR HEADER BLOCKS 8
3.1 Header Lines 8
3.2 FILE/DESCRIPTION block 9
3.3 SATELLITE/ID_AND_DESCRIPTION block 13
3.4 SATELLITE/STD_DEVS block 14
3.5 EPHEMERIS/MODELS block 15
3.6 SATELLITE/MANEUVER_INFO block 16
3.7 SATELLITE/ECLIPSE_INFO block 17
3.8 SATELLITE/EVENT block 18
3.9 EPHEMERIS/DATA block 19
4. FORMATS FOR RECORD TYPES 20
4.1 Time Tag line 21
4.2 PCS record 21
4.3 VCS record 23
4.4 CPC record 25
4.5 CVC record 26
4.6 POS record 27
4.7 VEL record 29
4.8 CLK record 30
4.9 CRT record 31
4.10 ATT record 32
5. EXAMPLES 34
6. ACKNOWLEDGEMENTS 41
7. REFERENCES 41
8. REVISION HISTORY 42

1. THE PHILOSOPHY OF ORBEX

The International GNSS Service (IGS), formerly known as the International GPS Service, has been generating GPS precise orbits since its inception in 1994. The format used for these initial IGS orbits was the Standard Product 3 (SP3-a) format developed by Benjamin Remondi [Remondi 1989, Remondi 1991, Spofford and Remondi 1994]. In 1998, Werner Gurtner and Markus Rothacher defined an SP3-b format to allow for the combination of GPS and GLONASS orbits in a single file [IGEX Mail 0042, 27 Oct 1998]. At the 2000 IGS Analysis Center Workshop, it was suggested to further modify the SP3 format to include clock accuracy information, and to provide separate orbit accuracy information for both the observed and the predicted parts of the IGS ultra-rapid orbits. In 2004, the IGS switched to SP3-c for its combined GPS orbits, beginning with week 1285 for the rapid and ultra-rapid orbits, and week 1283 for the final orbits [Gendt 2004].

At the 2008 IGS Analysis Center Workshop in Miami Beach, it was suggested to create a new orbit format for the IGS called the ORBit EXchange format (ORBEX). This new format would also be usable for Low Earth Orbiting (LEO) satellites and would possess the following features:

- Unlimited number of satellites
- Unlimited number of comments
- Irregularly spaced data epochs
- Variable number of satellites at each epoch
- A more flexible, SINEX-like header
- 0.1 mm position precision (for GRACE, and other formation-flying satellites)
- Blank-space delimited fields (to allow for any size coordinate or precision)
- Attitude information.

All of these features have now been incorporated into this format document, along with the idea of allowing for a possible future extension of the length of the satellite ID, since already in 2019 there are plans to launch a 500-satellite GNSS-RO (Radio Occultation) constellation. By necessity, the main philosophy behind ORBEX is flexibility. But it is also important to avoid redundancy, especially when it can conflict with existing IGS authoritative sources (for example, the SVN and COSPAR numbers maintained in the ANTEX file). It is not the purpose of this document to try to predict all possible future record types or header blocks for ORBEX, but rather to describe the records that have been suggested now, and to set the ground rules that will allow users to create new header blocks and record types as new constellations and new kinds of satellite-related data become available.

In Section 2 below, the ORBEX format is introduced in general terms, using a very simple example. In Section 3, the lines in each mandatory and optional block are described in detail, including the column widths of each field and the various options/codes that can be used. In Section 4, the formats for the different record types used in the EPHEMERIS/DATA block are described, along with the optional flags used in columns 1 through 23 of each data record. Next come four example ORBEX files, which are presented in Section 5. The remaining sections, 6 through 8, contain acknowledgements, references, and the revision history for ORBEX. The

Table of Contents on page 2 provides an easy way for readers to quickly find the format description for any type of block or data record.

2. GENERAL FORMAT DESCRIPTION

Figure 1 below shows a very simple ORBEX example with one satellite and three epochs. This example will serve as a starting point to describe the five mandatory parts of any ORBEX file: the two header lines, the FILE/DESCRIPTION block, the SATELLITE/ ID_AND_ DESCRIPTION block, the EPHEMERIS/DATA block, and \%END_ORBEX record. Note that in ORBEX, any line that begins with an asterisk in column 1 is a comment.

2.1 Header Lines

Each ORBEX file starts with two header lines. The first header line always begins with the characters ‘\%=ORBEX' followed by the ORBEX version number (e.g., 0.09). The remaining columns on this line are reserved. Be aware that there can exist ORBEX 0.09 files that contain only satellite attitude information (i.e., ATT records) in the +EPHEMERIS/DATA block.

The second header line begins with the characters ' $\% \%$ '. The remaining columns on this line are likewise reserved for future use. See Section 3.1 for a detailed description of the header lines.

```
%=ORBEX 0.09
%%
+FI LE/ DESCRI PTI ON
    DESCRI PTI ON EXAMPLE LEO ORBI T
    CREATED BY 
```



```
    I NPUT DATA
    p
    CONTACT NC@ gsac. nar ni a.gov
    TI ME SYSTEM
    START TI ME
    END TTME
    EPO\overline{CH}}\mathrm{ I NTERVAL
    COORD-SYSTEM
    FRAME-TYPE
    ORBI T-TYPE
    LI ST OF REC TYPES
    ORBI T XYZ \N| TS POS
    ORBI T- XYZ ' REFERENCE CENTER- OF-MASS
- FI LE/ DESCRI PTI ON
*-----------------------------
*I D SATELEI TE_DESCRI PTI ON
LO\overline{6} CHAMP
- SATELLI TE/ I D_AND_DESCRI PTI ON
*-------1--------2-------- 3---------4--------- 5---------6---------7------------
*2345678901234567890123456789012345678901234567890123456789012345678901234567890
* HPHEMERI S/ DATA
*
## 2002 12 29 0}0000.000000000000 1
```



```
POS LO\overline{6}
## 2002 12 29 0, 0
## 2002 12 29 0
- EPHEMERI S/ DATA
%END_ORBEX
```

Figure 1. A very simple ORBEX example with one satellite and three epochs.

2.2 Header Blocks

In ORBEX, everything after the two header lines, and before the \%END_ORBEX record, is a block (with the exception of comment lines, which can appear anywhere). There are two types of blocks: the blocks that come at the beginning of an ORBEX file (i.e., the header blocks), and the final block that stores the actual satellite positions, clock corrections, etc. (i.e., the EPHEMERIS/DATA block). In the future there may be other types of "data" blocks, but currently, the EPHEMERIS/DATA block is the only one. All of the various record types that are used to store satellite information (coordinates, velocities, clock corrections, clock rate-ofchange, correlations, attitude information, etc.) can be found in the EPHEMERIS/DATA block. It is always the last block in an ORBEX file.

Since ORBEX is usable for any satellite, in many instances the file will be very simple like the example given above (although probably not as short). Header blocks that contain detailed information are optional within ORBEX, since for many applications they are not required.
There are three mandatory blocks that are required for any satellite (or group of satellites). The first is the FILE/DESCRIPTION block, which lists: a description of the file, the name of the person/agency which created the file, the creation date, and various lines which describe how the file was created and which types of data records are present. The second is the SATELLITE/ID_ AND_DESCRIPTION block, which defines the 3-character satellite ID(s) used throughout the file (the length of these satellite IDs may be extended in the future), and includes a description of each satellite. And finally, the EPHEMERIS/DATA block, which contains all of the actual ephemeris data. In the mandatory SATELLITE/ID_AND_DESCRIPTION block, it is required that the satellites be listed in numerical order for each constellation. The order of the constellations is arbitrary (i.e., the Galileo satellites can come before the GPS satellites, or viceversa). All of the other optional SATELLITE blocks must use the same ordering for the satellite IDs as the SATELLITE/ID_AND_DESCRIPTION block. The FILE/DESCRIPTION block and the SATELLITE/ID_AND_DESCRIPTION block must always be the first and second blocks in an ORBEX file, respectively. The current list of ORBEX blocks is shown below.

The "mandatory" blocks are:

FILE/DESCRIPTION,
SATELLITE/ID_AND_DESCRIPTION, EPHEMERIS/DATA

The "optional" header blocks are:
SATELLITE/STD_DEVS, EPHEMERIS/MODELS, SATELLITE/MANEUVER_INFO, SATELLITE/ECLIPSE_INFO, SATELLITE/EVENT.

The first two optional header blocks, the SATELLITE/STD_DEVS block and the EPHEMERIS/MODELS block, merit some further discussion since they were designed to replicate the functionality currently found in the SP3-c and SP3-d format. Similar to these formats, the SATELLITE/STD_DEVS block contains the standard deviations for position for each satellite. And as a new feature, it now lists the standard deviations for the clock corrections as well. The quoted errors should represent one standard deviation for the specified time span for each respective satellite (i.e., there can now be separate standard deviations for both the observed and predicted parts of the IGS combined ultra-rapid orbits. See example 2 in Section 5).

The EPHEMERIS/MODELS block stores the same model information that is currently stored in the four comment records of the SP3-c format for the IGS combined orbits: the name of the satellite PCV model used (e.g., igs05_1580.atx), the names of the ocean and atmospheric tidal loading models used and whether a center-of-mass correction was included in these models, and the origin definitions for the orbits and clocks [Gendt 2006]. Further details can be found in Section 3.5.

2.3 The EPHEMERIS/DATA Block

Recall that in the SP3 format, each epoch is required to have the same number of satellites, which match exactly the number of satellites given in the header. If a satellite is missing at an epoch, it is required to fill those fields with zeros (which signifies that the positions at those epochs are unknown). This can happen, for example, if a satellite has a maneuver and the last portion of the day is missing. For ORBEX, one is now allowed to have a variable number of satellites at each epoch. Also, each satellite may have a different number of record types; for example, if a file has both GNSS satellites and LEO satellites, the LEOs may have attitude information (ATT records) but not the GNSS satellites. Similarly, the GNSS satellites may have clock information (CLK records) but not the LEO satellites. And a file can have only satellite attitude information (i.e., quaternions stored in ATT records) and no satellite position or velocity information stored in the EPHEMERIS/DATA block.

In the EPHEMERIS/DATA block, the satellites at each epoch can come in any order. The various record types (see Figure 2 in section 4) can also come in any order and can even be separate from one another for the same satellite. There are two exceptions: a CPC record must always follow its corresponding PCS record, and a CVC record must always follow its corresponding VCS record. This is because both records together are required to build the 4-by4 covariance matrix for the coordinates and clock correction (or the velocities and clock rate). Even though the satellites and record types are allowed to come in any order, for the sake of readability, it is "recommended" that the satellites follow the same order as the SATELLITE/ ID_AND_DESCRIPTION block, and that the record types for each satellite be kept together and follow the same general order shown in Figure 2.

The PCS record type, shown in Examples 1 and 2 in Section 5, stores the same information as the old P-record in the SP3-c format, namely: PRN/Slot number, X, Y, Z, satellite clock correction, and the standard deviations for these values. In the process of combining the orbits of several Analysis Centers (ACs) to make the IGS production orbits, standard deviations are
inserted at each SP3-c epoch based on the agreement between the ACs [Gendt 2004b]. The new POS record type in ORBEX stores only the X,Y,Z coordinates for the satellites, and the standalone CLK record type stores only the satellite clock correction. These two new record types give users the flexibility of providing CLK records at a more frequent interval than the POS records, if necessary.

For the records which appear in the EPHEMERIS/DATA block, the data values on each line come after column 23 and are separated by blank spaces. In columns 2 through 23, the record type label, satellite ID (the length of which may be extended in the future), event flags, maneuver flags, predicted flags, and the "number of data columns present" always follow a fixed-format. The actual number of values read in after column 23 will depend on the "number of data columns present" value stored in column 23. For example, there is a maximum of 8 data values for a PCS record, but if the user wishes to omit the standard deviations, then the number of data columns present will be 4 rather than 8 . This saves time and space by not forcing users to pad missing data with 0.0 values. Obviously, if an absent value is embedded between two data values that are being used, then that value must be represented by a 0.0 so that the total set of data values can still be read as a free-formatted set of numbers, each separated by one or more blank spaces.

2.4 Additional Formatting Tips

The remaining paragraphs in this section discuss general guidelines for formatting an ORBEX file. All fields in the header blocks are designed to have a FIXED-FORMAT. The records types in the EPHEMERIS/DATA block, which are used to store: position, velocity, satellite clock corrections, clock-rate, correlation information, attitude information, etc. are FREEFORMATTED after column 23. This gives users the flexibility to use larger numbers, or a greater number of decimal places, if necessary. The record type formats discussed in Section 4 do include "recommended" field widths and formats, and these should work well for most satellites (up to geostationary altitudes). For the header blocks, and for these "recommended" field widths, the following rules apply. Unless otherwise specified, all character strings are leftjustified in their defined fields, and all integers and floating-point numbers are right-justified. The width of each field, and the precision of the floating point numbers, are represented using Fortran syntax (e.g., A3, I17, F16.7, etc.). This is similar to other IGS formats like RINEX, SINEX, ANTEX, etc. Hopefully, with the examples given here, this syntax will be easily understood even by those who program in other computer languages. When data items are not needed for certain types of files, those fields can be left blank.

All year values are 4-digit integers. No need to pad the month, day, hour, minute, or second fields with leading zeroes; the only field that is padded with leading zeroes is the one used for the satellite names (e.g., G02 or R09).

Comment lines always begin with an "*" in column 1, and can be used to provide column headings and to show units. These column headings can also use underscore characters to show the width of each field. All ORBEX files must end with the \%END_ORBEX record.

3. FORMATS FOR HEADER BLOCKS

There are currently eight different blocks defined for ORBEX. The following section begins with the format specifications for the two header lines, and then provides the specifications for each of the nine different types of blocks.

3. 1 Header Li nes (Mandat ory)

Description:
Each ORBEX file must begi n with the two header lines described bel ow. The first header line begi ns with the char acters \%ORBEX foll owed by: the ORBEX versi on number.

The second I i ne begi ns with the characters " $\% \%$ '. The later col ums are reserved for future use.

FI RST HEADER LI NE			
__Fi el d	Description_	_For mat	Col s__
First Character	Si ngle character ' \% in col umm 1. No other character than '\% is al I owed.	A1	1 to 1
Second Char acter	Si ngle character ' $=$ in col umm \#2. No other character than ' $=$ is alI owed.	A1	2 to 2
Document Type	Fi ve characters ' ORBEX' in col s 3 to 7. I ndi cates that this is an ORBit EXchange docurent.	A5	3 to 7
Format Version	Five digits indi cating the version of ORBEX for mat used. 0.09 for this version.	1X, F5. 2	8 to 13
RESERVED COLUMNS	The remai ning col umms are reserved for future use.		14 to 120
		Total 120	

Fi el d	Description_	For mat	Col s
First Character	Si ngle character ' \% in col um \#1. No other character than ' \% is al I owed.	A1	1 to 1
Second Char acter	Si ngle character ' \% in col umm \#2. No other character than ' \% is al I owed.	A1	2 to 2
Thi rd	Si ngle character ' ' in col umm \#3.	A1	3 to 3

Char acter	No other character than ' ' is al I owed.		
RESERVED COLUMNS	The renai ni ng col umms are reserved for future use.		4 to 120
		Tot al 120	

3. 2 FI LE/ DESCRI PTI ON Bl ock (Mandat ory)

Description:
This block provi des information on the purpose of the file, the person/agency creating the file, the date the file was created, the type of data used in creating the file, etc. For each type of inf or mation, the formats used in col s 21 through 120 will differ. See the NOTES section bel ow to see how to format the inf ormation associ at ed with each particular label. This bl ock must al ways be the first block in an ORBEX file.

	All of the above labels must be present and in the above order. When comment records are added to this bl ock, it is recommended that an asterisk be pl aced in col umm 1 and col ums 2 through 21 be left blank. All of the label s bel ow are optional, but must come in this order, after the 'LIST OF REC TYPES' Iine in the +FI LE/ DESC̄RI PTI ON̄ bl ock. ' ORBI T_XYZ_UNI TS' - can be "METERS", "KI LOMETERS", et c. (format is A99) ' ORBI T_XYZ_REFERENCE' - can be "CENTER- OF-MASS", "ANTENNA- PHASE- CENTER". et c. (format is A99) ' ORBI T_VEL_UNI TS' - can be ""METERS/ SEC", " DECI METERS/ 'SEC", et C. (format is A99) ' SVCLK_UNI TS' - can be "M CROSECONDS", et c. (format' is A99) ' SVCLK_RATE_UNI TS' - can be "NANOSECONDS/ SECOND", " PI COSECONDS/ SECOND", et c. (format is A99)		
I nf or mation	Rel evant inf ormation for each I abel (see the detailed notes bel ow).	1X, A99	21 to 120
		Total 120	

NOTES:
' DESCRI PTI ON' - A description of the file contents (i.e., the type of or bit and the types of satellites, purpose of the orbit file, etc.). The format is: A99
'CREATED_BY' - The name of the person or agency whi ch created the file. The format is: A99
' CREATI ON_DATE' - Date and Ti me of creati on (gi ven to the nearest second). Use cols 22 to 40. The YMDHMS format is: $14,5(1 X, 12)$
The format for the entire line would be: format ($1 \mathrm{x}, \mathrm{a} 19,1 \mathrm{x}, \mathrm{i} 4,5(1 \mathrm{x}, \mathrm{i} 2)$)
'INPUT DATA' - A description of the dat a that was used to compute the orbit. The format is: A99. Si nce it is important to have thi s inf or mation easily read by computer, the following codes can be used al one, or joi ned toget her with the ' + ' sign, to represent the type(s) of data used for the orbit (and clock) det er mination:
u -- undifferenced carrier phase
du -- change in u with time

```
s -- 2-recei ver/1-satellite carrier phase
ds -- change on s with time
d -- 2-recei ver/2-satellite carrier phase
dd -- change in d with time
U -- undifferenced code phase (range observations)
dU -- change in U with time
S -- 2-recei ver/1-satel lite code phase (range observations)
dS -- change in S with time
D -- 2-recei ver/2-satellite code phase (range observations)
dD -- change in D with time
    -- angul ar measurements
    -- position data (e.g, an orbit fitted to a GNSS ki nematic navi gation sol ution)
    -- Doppl er Orbitography and Radi opositioningIntegrated by Satellite (DORIS) dat a
    -- Satellite Laser Ranging(SLR) observati ons
    -- Other (expl ai n in one or more comment records). This is a lowercase x.
    -- type separator
```

For example, if a LEO satellite orbit was computed using GPS undifferenced phase and range, SLR, and DORI S measurements, it would have an input data code of "u+U+L+O". If there are measurements used that are not defined here, use " x " for "other". and describe the measurements using one or more comment records (recall that a comment record is any record that has an asterisk in col um one). For files that are a conbi nation of orbits fromtwo or more sources, use the code 'ORBI T' Thi s table is not final, suggestions are wel come.

```
' CONTACT' - The E-Mail address for the rel evant contact person.
    The for nat is: A99
```

‘TI ME_SYSTEM - Exampl es: GPS, UTC(Uni versal Coor di nat ed Ti me, BI PM), TAl (I nt er nat i onal At omic Ti me), GAL(Gal ileo), GLO(GLONASS), 'TT ' (Terrestrial Ti me), etc. The format is: A20. For time systens like UTC and GLO that can be affected by leap seconds, the ORBEX file must be leap seconds free for its duration. For such files, the constant leap second of fet used in
the file (with respect to TAl) should I i sted after the TIME_SYSTEM code, for exampl e:
UTC LEAP_SECOND OFFSET (UTC-TAl): - 34. 0

The format is A20, A29, F7.1, wi th the Ā̄2 field being the 'LEAP_SECOND_OFFSET_(UTC-TAI):' I abel .
' START_TIME' - Time of first ephemeris epoch. For YMDHMS use cols 22 to 53 with t he format: I 4, 4(1X, I 2), 1X, F15. 12

- For Mbdified Julian Date and fraction of day (this is optional) use cols 56 to 80 with the for nat: I 5, 1X, F19. 17
- For GPS week and seconds of week (this is optional) use cols 83 to 106 with the format i s: i 4, 1X, F19. 12

Note: The different date/time formats are for the user's conveni ence. They must all agree and be in the same TI ME SYSTEM as specified above. The GPS week is a conti nuous count starting in 1980 (no modul o 1024, no Gal ileo week count). If all three types of times are given, the format for the entire line woul d be: for mat ($1 \mathrm{x}, \mathrm{a} 19,1 \mathrm{x}, \mathrm{i} 4,4(1 \mathrm{x}, \mathrm{i} 2), 1 \mathrm{x}, \mathrm{f} 15$. 12 , 2 x , i $5,1 \mathrm{x}, \mathrm{f} 19.17,2 \mathrm{x}, \mathrm{i} 4,1 \mathrm{x}, \mathrm{f} 19.12$)
' END_TI ME' - Ti me of last ephemeris epoch. For YMDHMS use cols 22 to 53 wi th t he f or mat: I 4, 4(1X, I 2), 1X, F15. 12

- For Mbdified Julian Date and fraction of day (this is optional) use cols 56 to 80 with the format: I5, 1X, F19. 17
- For GPS week and seconds of week (this is optional) use cols 83 to 106 with the for mat: i 4, 1X, F19. 12

Note: The different date/time formats are for the user's conveni ence. They must al I agree and be in the same TI ME SYSTEM as specified above. The GPS week is a conti nuous count starting in 1980 (no modul o 1024, no Gal ileo week count). If all three types of times are given, the format for the entire line would be: for mat ($1 \mathrm{x}, \mathrm{a} 19,1 \mathrm{x}, \mathrm{i} 4,4(1 \mathrm{x}, \mathrm{i} 2$) , $1 \mathrm{x}, \mathrm{f} 15$. $12,2 \mathrm{x}$, i $5,1 \mathrm{x}, \mathrm{f} 19.17,2 \mathrm{x}, \mathrm{i} 4,1 \mathrm{x}, \mathrm{f} 19.12$)
' EPOCH_I NTERVAL' - The spacing (i n seconds) bet ween each ephemeris epoch.
Cols 22 to 30. The format is F9. 3 . For files with
irregul arly-spaced epochs, this field will be filled with the word "I RREGULAR" (A9).
' COORD SYSTEM and 'FRAME TYPE' - To make these fiel ds machi ne-readable, pl ease use the codes listed ${ }^{-}$n the table bel ow. Thi s table is not consi dered final, suggestions are wel come and new coordi nate systens will be added as they are created or requested. For the ECEF coordi nate systems I i sted bel ow for the original IGS orbits, the ref erence Epoch time scale is GPS Ti me. For The quasi-i nertial ECI frames, the timescal e is usually Terrestrial Time (TT) where TT $=$ TAl + 32. 184 seconds and TAl is International At omic Time. The format for both codes is A20.

Note: For the conbi ned IGS orbits, the FRAME TYPE will likel y be an Earth-Centered, Earth-Fi xed frame (ECEF). For cases where the user may want to use the ORBEX format to store satellite positions in an inertial frame, this label may be 'BCRS' (for the quasi-inertial Barycentric reference system) or 'ECl' for a quasi-inertial. Earth-
Centered reference frame. Note that there are many ECl frames (GCRF, MDD, TOD,
J 2000 or EME2000, TEME, M50, et c.). Use "OTHER" for any frame type not listed here, and expl ain using one or more comment records. This table is not final, suggestions are wel come.

```
' ORBI T_TYPE' - The "type of orbit" i s described using a three character l abel. The four orbit
    types currently defi ned are listed bel ow. Thi s list is not final, ot her label s
    nay be added in the future. The format is A3
    FIT (fitted)
    EXT (extrapol at ed or predi ct ed)
    BRD ( br oadcast)
    HLM(fitted after appl ying a Hel mert Transformation).
'LIST_OF_REC_TYPES' - A list of the record types one can expect to fi nd i n
    thi s ORBEX file. For example, a file with positions,
    cl ocks, and attitude inf ormation might use three types
    of records:
    POS CLK ATT
    These three di git codes are each separated by a
    bl ank space. Col s 22 to 117. The format i s 24(A3,1X).
```

The label s listed bel ow may be optional. They have been moved here from the two header lines because they are not mandat ory for all files (e.g., for a file with only ATT records in the EPHEMERI S/ DATA bl ock). Onl y a few of these may be used to describe the EPHEMERI S/ DATA, or none at all. If any of these label s appear in the FI LE/ DESCRI PTI ON block, they shoul d appear in the same gener al or der as shown bel ow. They are requi red whenever the EPHEMERI S/ DATA bl ock incl udes position, cl ock, vel ocity, and/ or clock-rate inf or mation.

```
' ORBI T_XYZ_UNITS' - Satellite positi on coordi nates can be i n units of "METERS",
    "KI LOMETERS", et c. (format i s A99).
' ORBI T_XYZ_REFERENCE' - The reference poi nt for these satellite positions (and vel ocities) can be
                        t he satellite "CENTER- OF-MASS", "ANTENNA-PHASE-CENTER", etc.
                        (format is A99).
' ORBI T_VEL_UNITS' - Satellite vel ocity vect or components can be i n units of "METERS/ SEC",
                        "DECl METERS/ SEC", et c. (format is A99).
' SVCLK_UNI TS' - The sat el Iite cl ock correcti ons can be in units of "M CROSECONDS", "NANOSECONDS",
        et c. (f or mat i s A99).
' SVCLK_RATE_UNI TS' - The rate- of-change of the satellite clock correcti ons can be in units of
    "NANOSECONDS/ SECOND", "PI COSECONDS/ SECOND", et c. (f or mat i s A99).
```


3. 3 SATELLI TE/I D_AND_DESCRI PTI ON Bl ock (Mandat ory)

Description:
Thi s bl ock provides the definitions for the 3-character satellite identification label (IDs) that will be used throughout the file, in the various header blocks and in the main
EPHEMERI S/ DATA bl ock. Thi s bl ock must al ways follow the FI LE/ DESCRI PTI ON bl ock as the second header block in an ORBEX file. Each 3-character ID is followed by a 100-character description field. In addition to satellite names, this description field can al so be used to store certain types of satellite-specificinformation. This can be especially useful for applications which might not have special header bl ocks al ready defined. For the 3 -character IDs, it is recommended that the IGS-defined IDs be used (especi ally for GNSS and LEO applications). These follow the conventions set by associ at ed formats li ke RI NEX and ANTEX (see the NOTES section bel ow). If no previ ous IGS-defined code(s) exist, then user-defined satellite IDs can be used and described via this SATELLITE/ID_AND_DESCRI PTI ON bl ock.

NOTES:
As described previ ously in the Sp3-c format, and in RINEX, the IGS-defined satellite IDs are comprised of a one-character satellite systemidentifier followed by two-digit integer number (e.g., G02, G31, R03, R15, E02, C01, S22, L06, etc.). The satellite systemidentifier codes are:

G: GPS
R : GLONASS
E: Galileo
C: COMPASS
L : Low Earth Orbiting satellite (LEO), see http://cddis. nasa. gov/sp3c_satlist.hth
S: Satellite-Based Augment ation System (SBAS)
The 2-digit integer numbers represent the following for each different type of constellation: PRN (for GPS, Gal ileo, and COMPASS) Sl ot number (for GLONASS)
PRN-100 (for SBAS Geostationary)
If the integer number is less than 10, it should be padded with a leadi ng zero (i.e., 'G01' not 'G1'). All numbers must be $>=01$ and $<=99$; zero is not a valid satellite number.

There are codes for many different LEO satellites gi ven at the CDDI S web page referenced above. If no IGS- defi ned code is avail able for a satellite (or group of satellites) the user can define new codes. It is recommended that the new codes not use any of the six letters listed above, to avoid any possible conf usion regarding a satellite's identity.

For each constellation type, the satellite IDs must be listed in numerical order. The constel lation types thensel ves can cone in any order (e.g., in a file containing GPS and GLONASS satellites, the GLONASS satellites can come first in numerical order, followed by the GPS satellites in numerical order -- or vice-versa).

3.4 SATELLI TE/ STD_DEVS Bl ock (Opt ional)

Description:

Similar to the ol der SP3-c format, this block lists: the standard devi ation of the satellite positions for a given time period' (in mm , and now the standard deviation of the satellite clock corrections (in picosecs). Al so listed are the observed/ predicted flags, and the Start/End Ti mes. Since each line has its own start and stop time, additional lines can be added to give different position and/ or cl ock standard deviations for specific time spans (e. g., for the predicted part of the IGS ultra-rapid orbit, or for periods when a satellite is known to have experi enced a problem. If a position standard deviation is unknown leave the field blank; if it is greater than 100 meters, use the val ue 99999. 99 mm in col ums 50 to 57 . If a cl ock correction standard deviat i on is unknown leave the fi el d bl ank; if it is greater than 100 microseconds, use the val ue 99999999. 999 psec in col ums 59 to 70. The order of the satellite IDs in this block must match that used in the SATELLI TE/I D_AND_DESCRI PTI ON bl ock.

SATELLI TE/ STD_DEVS DATA LI NE			
__Fi el d_	Description	For mat	Col s_-_
First Character	Si ngle bl ank character in col one. No other character than ' is al I owed.	1X	1 to 1
Satellite ID	First character represents a constel I ation type. The I ast two are the PRN or sl ot number (e. g., G02 for GPS, or R09 for GLONASS). For LEOS see: http://cddi s. nasa. gov/ sp3c_satlist.htm Not e: SV I Ds I ike "G 2" or "R 9" or " 31 " are not al lowed. Thi s is the uni que satellite identifier for the entire file.	A1, I 2.2	2 to 4
RESERVED COLUMN	Col ums 5 to 9 are reserved for I ater use (in case I onger SV IDs become necessary).	3 X	5 to 7
St andard Dev. for Positions	Standard Deviation for satellite positions, for the time period specified (one si gma, units $=\mathrm{mm}$).	1X, F8. 2	8 to 16
St andard Dev. for Satellite Cl ock Corrections	St andard Devi ation for satellite cl ock corrections, for time period specified (one si gma, units = pi coseconds).	1X, F12. 1	17 to 29
Orbit Prediction FI ag	A two- char Observed/ Predctd. flag $\mathrm{OB}=$ orbit has been observed PR = orbit is predicted (for the time period specified).	1X, A2	30 to 32
Cl ock Corr. Predi ction FI ag	A two- char Observed/ Predctd. flag $\mathrm{OB}=\mathrm{cl}$ ock has been observed $\mathrm{PR}=\mathrm{cl}$ ock is predicted (for the time period specified).	1X, A2	33 to 35

Start Time (YMDHME)	First epoch for the time period specified for the standard devs, \# epochs, and obs/predi ct ed flag (time is to the nearest second).		36 to 55
End Ti me (YMDHME)	Last epoch for the time period specified for the standard devs, \# epochs, and obs/predi cted flag (timeis to the nearest second).	$\begin{aligned} & 1 X, 14 \\ & 1 X, 1 \\ & 1 X, 12 \end{aligned}$	56 to 75
		Total 75	

3. 5 EPHEMERI S/ MDDELS BI ock (Opt i onal)

Description:

This block provides information on the various models used to cal cul ate the satellite positions and satellite clock corrections in an ORBEX file. For the $I G S$ conbi ned orbit files, this might incl ude the name of the sat ellite ant enna Phase Center Variation (PCV) model, the name of the Ocean Ti de Loading (OTL) model, the name of the At mospheric Ti de Loadi ng (ATL) model, and whet her or not the Earth Center-of-Mass Correction (CMC) was applied to the OTL and ATL model s. IGS conbi ned orbit files may al so have model names and codes that describe the origin definition for the orbits and satellite clock corrections.

NOTES:

The following is an example of what an EPHEMERI S/ MDDELS bl ock might look like for an IGS conbi ned orbit file:

```
+EPHEMERI S/ MDDELS
*MDDEL TYPE DESCRI PTI ON
```



```
    OCEAN TI IDE LOADI NG MDDEL NOL 
    ECEF ORI G N NEFI NI TI ON ORBI TS
MO
NONE NO EARTH-CMC APPLI ED
    ECEF-ORI G N DEFI NI TI ON_CLOCKS
CENTER_OF_NETVORK
ECEF-ORI GI NDEFI
```

SATELLI TE ANTENNA PCV MODEL:
The history of which s̄atellite antenna offsets and PCVs were used to create a GNSS orbit (or an IGS conbi ned orbit) is tracked by noting the week number in the name of the ANTEX file (e. g., i gs 05 www. at x, where www is the GPS week when the file was rel eased). For cur rent GPS and GLONAS̄S satel lites the DESCRI PTI ON fiel d should be filled using the compl ete, l ower case ANTEX filename (e.g. igs05_1575. atx). If no satellite PCV model was used, use the label NONE.

OCEAN TI DE LOADI NG MDDEL:
For or bit det er mination, the site-dependent amplitude and phase val ues for the 11 main tides can be gener at ed upon request by the Bos-Scherneck Ocean Ti de Loading (OTL) servi ce at the Onsal a Space Observat ory: http://ww. oso. chal mers. se/-1 oading/. As an option, these 66 coeffici ents can be corrected for the center-of-mass moti on of the earth, for various OTL model s such as FES2004: ht tp: / / wuw. oso. chal mers. se/ $\dashv 1$ oadi ng/ cme. ht mh
The model name for the Ocean Ti de Loadi ng model must be gi ven at the beginning of the DESCRI PTI ON field. If no OTL nodel was used, use the label NONE. Then, separated by one blank space, the I abel 'EARTH CMC APPLI ED' or the I abel 'NO EARTH CMC APPLI ED' is gi ven to indi cate whet her or not the center-of-mas̄s correction (CMC) was inc̄luded'in the model.

ATMDSPHERI C TI DE LOADI NG MDDEL:
In a similar fashi on, the name of the At mospheric Ti de Loading (ATL) model should be given at the begi nni ng of the DESCRI PTI ON fi el d. If no ATL nodel was used, use the Iabel NONE. Then, separ at ed by one bl ank space, the I abel 'EARTH CMC_APPLI ED' or the I abel 'NO_EARTH_CMC_APPLI ED' is given to i ndi cate whet her or not the center-of-mass correction (CMC) was inç uded in $\overline{\text { the model. }}$

ECEF ORI G N DEFI NI TI ON ORBI TS:
The orbits \bar{g} enerated by the Anal ysis Centers (ACs) of the $I G$ are usually given in an EarthCentered, Earth-Fixed frame (ECEF). Usually this frame is the Iatest International Terrestrial Ref er ence Frame (ITRF) or a realization of the ITRF. The origin definition for the orbit(s) is CENTER_OF_NETVORK (CON) if the center-of - mass corrections (CMC) are applied to the tide loadi ng model s dữing generation of the orbits. If these corrections are NOT applied, then the origin for the orbits is CENTER_OF_MASS (COM).

ECEF ORI G N DEFI NI TI ON CLOCKS:

The ōrigin definition for the clock(s) is CENTER_OF NETVORK (CoN) if the station coordinates are fi xed to the ITRF during cl ock adj ustment. If the OR̄BEX file is creat ed using Anal ysis Center data where not all of the clock data was referenced to the same origin, then the label used shoul d be COMBI NATI ON (Gendt, 2006). If no clocks are provided for the satellite(s), use the I abel NOT APPLI CABLE. Thus the choi ces for the origin definition of the clocks (as used together with an ECEEF orbit) are:
CENTER OF NETVORK
COMBI NATI ŌN
NOT_APPLI CABLE

Thi s EPHEMERI S/ MODELS bl ock may al so be used to st ore information about ot her types of model s. It is recommended that sof tware readi ng this bl ock be desi gned to skip over any model types it might not recognize. Bel ow is a generic example that includes some additional model types.

```
+EPHEMERI S/MODELS
*MDDEL TYPE (TNTENNA-\overline{C}
*MDDEL TYPE \
    OCEAN TI DE LOADI NG MDD\overline{EL FES2OŌ4 EARTH CMC_APPLI ED}
    ATMOSPHERI C TI DE LOOADI NG MDDEL NONE NO EARTH_CMC-APPLI ED
    ECEF_ORI G N_DEFI N| TI ON_O\overline{RBI TS CENTER_OF}_NETVO
    NUTATI ON
    PRECESSI ON
    SQ_AR SYSTEM_EPHEMERI S
    RELATTVI TY
    ATMDSPHERE MDDEL
    SOLAR RADI ATTI ON PRESSURE
- EPHENERI S/ MDDELS
        | AU1980
        I AU1976
        DE403
        POST NEVTONI AN
        MEI S77
CODE_9PARAM
```


3. 6 SATELLI TE/ MANEUVER_I NFO Bl ock (Opt i onal)

Description:

Thi s block provides information on the start time and end time of a satelite maneuver, and the total resultant change in vel ocity after the maneuver, in the radial, al ong-track, and crosstrack directions (as referenced to the inertial orbital plane). The Delta-V fiel ds in col ums 72 through 104 are optional; in some cases the actual vel ocity change will be unknown, but the start and stop times will still be important for avoiding bad data. If the end time (i.e., the duration) is unknown, col ums 40 to 71 may be left blank. For those satelites that have had
maneuvers, the order of the satel itel Ds in this block must match that used in the SATELLI TE/I D_AND_DESCRI PTI ON bl ock.

Cont ent s:			
SATELLI TE/ MANEUVER_I NFO DATA LI NE			
__Fi el d	Description	For mat	_Col S_-_
First Character	Si ngle bl ank character in col one. No other character than ' is alI owed.	1X	1 to 1
Satellite ID	First character represents a constellation type. The I ast two are the PRN or sl ot nunber (e. g., G02 for GPS, or R02 for GLONASS). For LEOs see: http://cddi s. nasa. gov/ sp3c_satlist.ht mh.	A1, I 2.2	2 to 4
RESERVED COLUMN	Col ums 5 to 7 are reserved for I ater use (in case I onger SV IDs become necessary).	$3 X$	5 to 7
Start Time (YMDHMS)	Date/Ti me when the maneuver was known to begin.	$\begin{gathered} 1 X, 14 \\ 4\left(\begin{array}{l} 1 X, \\ 1 \times, \end{array} 2\right) \\ 1 \times 15.12 \end{gathered}$	8 to 40
End Ti me (YMDHMS)	Date/ Ti me when the maneuver ended. If the end time (duration) is not known, these fiel ds may be left bl ank.	$\begin{gathered} \left.1 X, 1 \begin{array}{l} 4 \\ 4(1 X, \end{array}\right) \\ 1 X, F 15.12 \end{gathered}$	41 to 73
Radi al Del ta-V	The resultant change in vel ocity in the radial direction ($\mathrm{m} / \mathrm{sec}$).	1X, F10. 4	74 to 84
Al ong- Tr ack Del ta-V	Resultant change in vel ocity in the al ong-track direction (m sec).	1X, F10. 4	85 to 95
Cross-Track Del ta-V	Resultant change in vel ocity in the cross-track di rection (mysec).	1X, F10. 4	96 to 106
		Tot al 106	

3. 7 SATELLI TE/ ECLI PSE_I NFO Bl ock (Opt i onal)

Description:
Thi s block provides information on the start and stop timeof an eclipse period for a particular satellite. For those satellites that are in eclipse, the order of the sat ellite lds in this bl ock must match that used in the SATELLITE/ID_AND_DESCRI PTI ON bl ock.

Cont ent s:			
SATELLI TE/ ECLI PSE_I NFO DATA LI NE			
_Fi el d	Description	For mat	Cols
First Character	Si ngle bl ank character in col one. No other character than ' ' is alI owed.	1X	1 to 1
Satellite ID	First character represents a constellation type. The l ast two are the PRN or sl ot nunber (e. g. , G02 for GPS, or R02 for GLONASS). For LEOs see: http://cddi s. nasa. gov/	A1, I 2.2	2 to 4

	sp3c_satlist.ht mh		
RESERVED COLUMN	Col ums 5 to 7 are reserved for I ater use (in case I onger SV IDs become necessary).	3 X	5 to 7
Start Ti me (YMDHME)	Date/Ti me when the eclipse was known to begi n .		8 to 40
End Ti me (YMDHME)	Date/Ti me when the eclipse was known to end.	$\begin{gathered} 1 X, 14 \\ 4\left(\begin{array}{l} 1 X, 1 \\ 1 X, F 15 . \end{array}\right. \\ 12 \end{gathered}$	41 to 73
TYPE OF ECLI PSE	'EARTH' = the satellite is in the earth's shadow, 'MDON' = the satellite is in the moon's shadow.	1X, A5	74 to 79
		Total 79	

3. 8 SATELLI TE/ EVENT Bl ock (Opt i onal)

Description:
Thi s block provides information on the start and stop times of any generic "event" for a particular satellite. These events might be rel at ed to the satel lite "clock", "phase", "power", etc. A clock event is any event which causes a di scontinuity in the satellite clock corrections' (such as when a clock fails and the satellite must switch to using a different onboard clock). An example of a phase event might be when the phase of the signal for a satellite suddenl y shifts, and then shifts back again (the actual phase shift may vary, if the details are known they can be included in the description field). An example of a power event might be something like boosting the signal power on one or more satellites. For those satellites that are in eclipse, the order of the satellite IDs in this bl ock must match that used in the SATELLITE/ID AND DESCRI PTI ON bl ock. The list of event types given bel ow is not final, suggestions are weTcone .

Cont ents:

__Fi el d	_Description	For mat	_Col s__
First Character	Si ngle bl ank character in col one. No other character than ' i is al I owed.	1X	1 to 1
Satellite ID	First character represents a constellation type. The I ast two are the PRN or slot number (e.g., G02 for GPS, or R02 for GLONASS). For LEOS see: http://cddi s. nasa. gov/ sp3c_satlist.ht mh	A1, 1 2.2	2 to 4
RESERVED COLUMN	Col ums 5 to 7 are reserved for I ater use (in case I onger SV IDs become necessary).	3 X	5 to 7
Event Type	The type of event being described: CLOCK PHASE POWER	1X, A10	8 to 18
Start Time (YMDHMS)	Date/Ti me when the satellite event was known to begi n.	$\begin{gathered} 1 X, 14 \\ 4\left(\begin{array}{l} 1 \times, \end{array}\right) \\ 1 \times, \text { F15. } 12 \end{gathered}$	19 to 51

End Ti me (YMDHMS)	Date/ Ti me when the event ended. If the end time (i.e., duration) is unknown, col ums 50 to 82 may be left bl ank.	$\begin{gathered} 1 X, 14 \\ 4\left(\begin{array}{l} 1 X, \\ 1 X, \\ 1 \times 2 \end{array}\right) \\ \hline \end{gathered}$	52 to 84
DESCRI PTI ON	65-char comment describing what caused the satellite event (e.g., "cl ock failure: switched from cesi umto rubi di um').	1X, A65	85 to 150
		Total 150	

3. 9 EPHEMERI S/ DATA BI ock (Mandat ory)

Description:
Thi s bl ock is al ways the last, and usually the largest, block since it contains all of the ephemeris data for the ORBEX file. The data for each epoch begins with a Ti me Tag Li ne which gi ves the Year, Mbnth, Day, Hour, M nute, and Seconds for the epoch, pl us the number of satellites whi ch appear at that epoch. Each Ti me Tag Li ne starts with the characters "\#\#' in col ums one and two. The Ti me Tag Li ne is then followed by a series of data records, each of whi ch begi ns with a blank character, followed by a 3 -character record type, then another bl ank char acter, then a 3-character Satelifite ID (note that the width of this satellite ID may be ext ended in the fut ure, to allow for constellations with greater than 99 satellites). The di scussi on in Section 4 bel ow describes the format of the Time Tag Line and al so the different record types whi ch are used to store orbital data. It is not required that all sat ellites have the exact same number of record types. For example, a file that has GPS, GLONASS, and a LEO satellite might have attitude inf ormation for the LEO (ATT records) but not for the GNSS satellites. The satellites at each epoch can come in any order, and the record types can come in any order. However, for the sake of readability, it is recommended that the satellites be written in the same or der as the mandat ory SATELLI TE/I D AND DESCRI PTI ON bl ock, and that the record types for each satel lite be kept together and follow the general order outlined in figure 2 bel ow. Wile the order of most record types can be arbitrary, there are two exceptions: a CPC record must al ways follow its corresponding PCS record, and a CVC record must al mays foll ow its corresponding VCS record. This is because both records are needed to build the 4 - by- 4 covariance matrix for the coordi nates and clock correction (or for the vel ocities and clock rate-of-change).

Si milar to all ot her blocks, this block must start with a +EPHEMERIS/DATA line and end with a EPHEMERI S/ DATA I ine. Recall that the last line in any ORBEX file must al ways be the \% ${ }^{\text {E }}$ ND_ORBEX I i ne.

4. FORMATS FOR RECORD TYPES

Figure 2, on the following page, shows an example for the time tag record that defines the start of each epoch, and an example for each of the different record types used in the EPHEMERI S/DATA bl ock.
Fi gure 2. Exampl es of possi bl e record types used in the EPHEMERI S/ DATA bl ock.
Exampl e TIME TAG record:
\#\# 2009 4 $4 \begin{array}{llllll} & 7 & 0 & 0 & 0.000000000000 & 51\end{array}$
Example PCS record:
*REC ID_ FLAGS_ Examol e CPC record:
*REC ID \quad FLAGS_
CPC GŌ2
Exampl e VCS record:
${ }_{*}^{*}$ REC I D_ \quad FLAGS_
Exampl e CVC record:

Exampl e POS record:
$\begin{array}{lll}\text { *REC ID } & \text { FLAGS } \\ \text { POS } & \text { G02 } & \text { P }\end{array}$
Exampl e VEL record:
*REC ID $\begin{aligned} & \text { VLAGS_ } \\ & \text { VEL G02 }\end{aligned} \quad$.
Exampl e CLK record:
*REC ID
CLK GŌ
FLAGS_
Example CRT record:

*REC ID
ATT LŌ
FLAGS_

4. 1 Ti me Tag Li ne

4. 2 PCS Record

__Fi el d	Description	Format	Col s_
First Character	Si ngle bl ank character in col one. No other character than ' is al I owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: PCS).	A3	2 to 4
RESERVED	The fifth col um is left blank.	1X	5 to 5
Satellite ID	First character represents a constel lation type. The I ast two are the PRN or slot number (e. g., G02 for GPS, or R02 for GLONASS). For LEOS see: http://cddi s. nasa. gov/ sp3c_satlist.htm.	A1, 1 2.2	6 to 8
RESERVED	Col umss 9 to 11 are reserved for I ater use (in case I onger SV IDs become necessary).	3 X	9 to 11
Sat el Iite Event FI ag	' $E^{\prime}=$ a satellite event has occurred (a CLOCK, PHASE, or POWER event) Bl ank means ei ther no event has occurred, or it is unknown whether any event has occurred. See the NOTES section bel ow.	1X, A1	12 to 13

Predi ct ed Cl ock FI ag	' P ' = the satellite clock corr at this epoch is predicted. A bl ank means the clock corr is observed.	A1	14 to 14
RESERVED	Col umms 13 and 14 are reserved for I ater use.	2 X	15 to 16
Maneuver Fl ag	- $M=a$ maneuver has occurred. A bl ank means either no maneuver occurred, or it is unknown whether any maneuver occurred. See the NOTES section bel ow.	A1	17 to 17
Predi ct ed Orbit FIag	' $P^{\prime}=$ the satellite position at this epoch is predicted. A bl ank means the position is observed.	A1	18 to 18
RESERVED	Col umms 19 to 21 are reserved for I ater use.	3 x	19 to 21
Nunber of Data Col ums Present	Gi ves the number of data col ums present on this line after col um 23. Choi ces are $3,4,7$, or 8 .	1x, 11	22 to 23
X-coor di nate	The X-coordi nate for the position of the satellite (in the coor di nate syst em specified in the FI LE/ DESCRI PTI ON bl ock). Units = meters.	1X, F16. 4	24 to 40
Y-coor di nate	The Y -coordi nate for the position of the satellite. Units = meters.	1X, F16. 4	41 to 57
Z-coor di nate	The Z-coordi nate for the position of the satellite. Units = meters.	1X, F16. 4	58 to 74
Satellite Clock Correction	The satellite clock correction in units of microseconds. Bad/ absent clock val ues are set equal to 9999999. 9999999. Units = microseconds.	1X, F16. 7	75 to 91
St andard Dev. for X-coord.	The one-si gra standard devi ation for the X-coordinate at this epoch (for the IGS conbi ned orbits, see I GSMAI L- 5008, 7 Sep 2004). If the si gma = 99999. 9 , it means the uncertainty for this coor di nate is greater than 100 meters, or the orbit for this SV is unreliable. Units = millimeters.	1X, F7. 1	92 to 99
St andard Dev. for Y -coord.	The one-signa standard devi ation for the Y -coordinate at this epoch If sigma = 99999. 9, it means the uncertainty for this coordi nate is greater than 100 meters, or the orbit for this SV is unreliable. Units = millimeters.	1X, F7. 1	100 to 107
St andard Dev. for Z-coord.	The one-si gra standard devi ation for the Z-coor di nate at this epoch If sigma = 99999. 9, it means the uncertainty for this coordi nate is greater than 100 meters, or the orbit for this SV is unreliable.	1X, F7. 1	108 to 115

NOTES: For each PCS record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-formatted (i.e., each data val ue is separated by one or more bl ank spaces). However, the 3-character record type code, the 3-character satelliteld, the satellite event flag, the predicted/ observed flags, the maneuver flag, the good/bad flags, and the Number of Dat a Col ums Present (i.e., all of the fields in col ums 2 to 23) mist be read according to the fixed formats gi ven above.

The Satellite Event Flag in col umm 13 can be 'E' or blank. ' E ' indicates that sometime bet ween the previ ous epoch and the current epoch, or at the current epoch, a satellite event occurred. A bl ank means either no event occurred, or it is unknown whet her any event occurred. The three types of satellite events currently defined are: CLOCK event (e.g., a cl ock swap on a satellite),
PHASE event (e.g., a signal phase shift on a satelite),
POUER event (e.g., a power boost to one or more signal s froma satellite).
Thi s list is not final, suggestions are wel come. Additional details regarding a particul ar probl em or event for a satellite can be pl aced into a SATELLITE/EVENT bl ock, whi ch must be positi oned somewhere prior to the EPHEMERI S/ DATA bl ock.

The Maneuver Fl ag in col umm 15 can be ' M or blank. ' M indicates that sometime bet ween the previ ous epoch and the current epoch, or at the current epoch, an orbit maneuver took pl ace for this satellite. A maneuver is loosel y defi ned as any pl anned or humanl y-detectable thruster firing that changes the orbit of a satellite. A bl ank means either no maneuver occurred, or it is unknown whet her any maneuver occurred. Additional details regarding start time, stop time (if known), and the del ta V's for a sateliite can be placed in a SATELLITE/ MANEUVER bl ock, prior to the EPHEMERI S/ DATA bl ock.

The Number of Data Col ums Present val ue in col umm 23 gives the number of data val ues that are actually listed for this satellite and this particular record type. The maxi mum number of data val ues will depend on the record type: 8 for (PCS, VCS), 6 f or (CPC, CVC), 4 f or (ATT), 3 f or (POS, VEL), and 1 for (CLK, CRT). Si nce the dat a val ues are read in free-formatted, it is recommended that reading prograns first initialize al l val ues to zero, then read the line into a buffer first (so that data items are never accidentally read fromthe next line). When a data val ue is invalid but is embedded in bet ween two valid data val ues, then because of the freeformatting, it must be represented as a 0.0 - which acts as a place hol der (e.g., if a PCS record has no cl ock information, but does have the position standard deviations, then the clock correction field must have a 0.0000000 as a place hol der).

4. 3 VCS Record

_Fi el d	Description	For mat	Col s
First Character	Si ngle bl ank character in col one. No other character than ' ' is alI owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: VCS).	A3	2 to 4
RESERVED	The fifth col um is left blank.	1 X	5 to 5
Satellite ID	First character represents a con-	A1, I 2.2	6 to 8

	stel Iation type. The I ast two are the PRN or sl ot number (e. g., G02 for GPS, or R02 for GLONASS). For LEOs see: http:// cddi s. nasa. gov/ sp3c_satilist.htm .		
RESERVED	Col ums 9 to 11 are reserved for I ater use (in case I onger SV IDs become necessary).	3 X	9 to 11
RESERVED	Col ums 10 to 17 are not utilized for the VCS record.	7X	12 to 18
RESERVED	Col umms 19 to 21 are reserved for future use.	3 X	19 to 21
Nunber of Dat a Col ums Present	Gi ves the number of data col ums present on this line after col um 23. Choi ces are 3, 4, 7, or 8.	1x, I 1	22 to 23
X-component of the satellite vel ocity	The X -component of the satellite vel ocity (in the coordi nate system specifi ed in the FI LE/ DESCRI PTI ON block). Units = meters/second.	1X, F16. 7	24 to 40
Y - component of vel ocity	The Y -component of vel ocity. Units = meters/second.	1X, F16. 7	41 to 57
Z- component of vel ocity	The Z- component of vel ocity. Units = neters/second.	1X, F16. 7	58 to 74
Rat e- of - Change of satellite	The rate- of-change of the satellite cl ock correction. Bad/absent cl ock rate- of-change val ues are set equal to 9999999. 9999999 . Units = nanoseconds/ second.	1X, F16. 7	75 to 91
St andard Dev. for X-vel ocity	The one-si gra standard devi ation for the X-velocity at this epoch. If sigma =99999. 9, it means the uncertainty for this vel ocity is greater than 1 deci meter/sec, or this SV's orbit is unreliable. Units = micrometers/second.	1X, F7. 1	92 to 99
St andard Dev. for Y-vel ocity	The one- si gra standard devi ation for the Y-vel ocity at this epoch. If sigma = 99999. 9, it means the uncertainty for this velocity is greater than 1 deci meter/sec, or this SV's orbit is unreliable. Units $=$ micrometer $\mathrm{s} /$ second.	1X, F7. 1	100 to 107
St andard Dev. for Z-vel ocity	The one- si gra standard devi ation for the Z-vel ocity at this epoch. If sigma = 99999. 9, it means the uncertainty for this vel ocity is greater than 1 deci meter/sec, or this SV's orbit is unreliable. Units $=$ micrometer $\mathrm{s} /$ second.	1X, F7. 1	108 to 115
St andard Dev. Rat e- of - Change of $\mathrm{SVCl} k$ cor r	The one-signa standard devi ation for the Rate-of Change of the SV clock correction at this epoch. If si gna = 9999999. 999, t hen the uncertainty for this cl ock rate is $>$ than 10 nanosec/sec, or this clock rate should not be used.	1X, F11. 3	116 to 127

NOTES: For each VCS record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-formatted (i.e., each data val ue is separated by one or more blank spaces). However, the 3 -char acter record type code, the 3 - char acter satellitelD, and the Number of Data Col ums Present (i.e., all of the pertinent fields in col ums 2 to 23) must be read according to the fi xed formats' gi ven above. To avoid redundancy, the sat el lite event flag, the predi cted/ observed flags, and the maneuver fiag, are not used for the VCS record.

The Number of Dat a Col ums Present integer in col umm 23 gives the number of data val ues that are actually listed for this satellite and this particular record type. The maxi mum number of data val ues for the above VCS record is 8 . The possible choi ces are: 3, 4, 7, or 8.

4. 4 CPC Record

XZ CORRELATI ON Coeffici ent	The correl ation coefficient bet ween the X-coordi nate and the Z- coor di nate (di vi de by 10*16).	1X, I 17	28 to 45
XC CORRELATI ON Coeffici ent	The correl ation coefficient between the X-coordi nate and the SV cl ock corr (di vi de by 10**16).	1X, I 17	46 to 63
YZ CORRELATI ON Coeffici ent	The correl ation coefficient bet ween the Y -coordi nate and the Z- coor di nate (di vi de by 10**16).	1X, I 17	64 to 81
YC CORRELATI ON Coeffici ent	The correl ation coefficient bet ween the Y-coordi nate and the SV cl ock corr (di vi de by 10**16).	1X, I 17	82 to 99
ZC CORRELATI ON Coeffici ent	The correl ation coefficient between the Z -coordi nate and the SV cl ock corr (di vi de by 10**16).	1X, I 17	100 to 117
		Total 117	

NOTES: For each CPC record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-formatted (i.e., each dat a val ue is separated by one or more bl ank spaces). However, the 3 -character record type code, the 3 -char acter satellite ID, and the Number of Dat a Col ums Present (all of the pertinent fields in col ums 2 to 23) must be read according to the fixed formats gi ven above. To avoid redundancy, the satellite event flag, the predicted/ observed flags, and the maneuver flag are not used for the CPC record.

The Number of Dat a Col ums Present val ue in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The naximm number of data val ues for the above CPC record is 6 . The possible choi ces are 4 or 6 , as expl ai ned above.

4. 5 CVC Record

__Fi el d_	Description	_For mat	Col s_
First Character	Si ngle bl ank character in col one. No other character than ' ' is alI owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: CVC).	A3	2 to 4
RESERVED	The fifth col um is left bl ank.	1X	5 to 5
Satellite ID	First character represents a constellation type. The l ast two are the PRN or slot number (e.g., G02 for GPS, or RO2 for GLONASS). For LEOs see: http://cddi s. nasa. gov/ sp3c_satlist.ht ${ }^{\text {m }}$.	A1, l 2.2	6 to 8
RESERVED	Col ums 9 to 11 are reserved for I ater use (in case I onger SV IDs become necessary).	3 x	9 to 11
RESERVED	Col umms 10 to 16 are not utilized for the CVC record.	$7 \times$	12 to 18

NOTES: For each CVC record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-formatted (i.e., each data val ue is separated by one or more bl ank spaces). However, the 3 -character record type code, the 3 -char acter satellite ID, and the Number of Data Col ums Present (all of the pertinent fields in col ums 2 to 23) must be read according to the fixed formats gi ven above. To avoid redundancy, the satellite event flag, the predicted/observed flags, and the maneuver flag, are not used for the CVC record.

The Number of Data Col ums Present integer in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The maxi mum number of data val ues for the above CVC record is 6 . The possible choi ces are 4 or 6 , as explai ned above.

4. 6 POS Record

__Fi el d	Description	_For mat	Col s__
First Character	Si ngle bl ank character in col one. No other character than ' ' is alI owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: POS).	A3	2 to 4

NOTES: For each POS record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-formatted (i.e., each data val ue is separated by one or more bl ank spaces). However, the 3 -character record type code, the 3 -character satelliteld, the satellite event flag, the' predicted/ observed flag, the naneuver flag, and the Nunber of Dat a Col ums Present (i.e., all of the pertinent fiel ds in col ums 2 to 23) mist be read according to the fixed formats gi ven above.

The Satellite Event Flag in col umm 11 can be 'E' or blank. 'E' indicates that sometime bet ween the previ ous epoch and the current epoch, or at the current epoch, a satellite event occurred.

A bl ank means either no event occurred, or it is unknown whet her any event occurred. The three types of satellite events currently defined are:
CLOCK event (e.g., a clock swap on a satellite),
PHASE event (e.g., a si gnal phase shift on a satellite),
POVER event (e.g., a power boost to one or more si gnal s'froma satelite).
Thi s list is not final, suggestions are wel come. Additional details regarding a particular problem or event for a satellite can be placed in a SATELLITE/EVENT bl ock, prior to the EPHEMERI S/ DATA bl ock.

The Maneuver Fl ag in col um 15 can be ' M or bl ank. ' M indicates that sometime bet ween the previ ous epoch and the current epoch, or at the current epoch, an orbit maneuver took place for this satel lite. A maneuver is loosel y defined as any planned or humanl y-detectable thruster firing that changes the orbit of a satellite. A blank means either no maneuver occurred, or it is unknown whet her any maneuver occurred. Additional details regarding start time, stop time (if known), and the delta $\mathrm{V}^{\prime} \mathrm{s}$ for a satelite can be placed in a SATELLITE/ MANEUNER bl ock, prior to the EPHEMERI S/ DATA bl ock.

The Nunber of Data Col ums Present val ue in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The maximum number of data val ues will depend on the record type: 8 for (PCS, VCS), 6 for (CPC, CVC), 4 for (ATT), 3 for (POS, VEL), and 1 for (CLK, CRT). Si nce the dat a val ues are read in free-formatted, it is recommended that reading programs first initialize all val ues to zero, then read the line into a buffer (so that data itens are never acci dentally read fromthe next line). For the above POS record, the only possible choi ce is 3, si nce one would expect all three coordi nat es will al ways be valid or inval id together. If none of the coordi nates are present, then obvi ously there would be no POS record included for this satellite.

4. 7 VEL Record

__Fi el d_	Description_	For mat	Col s__-
First Character	Si ngle bl ank character in col one. No other character than ' ' is alI owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: VEL).	A3	2 to 4
RESERVED	The fifth colum is left bl ank.	1X	5 to 5
Satellite ID	First character represents a constellation type. The I ast two are the PRN or slot number (e.g., G02 for GPS, or R02 for GLONASS). For LEOs see: http://cddi s. nasa. gov/ sp3c_satlist.ht m	A1, l 2.2	6 to 8
RESERVED	Col ums 9 to 11 are reserved for I ater use (in case I onger SV IDs becore necessary).	3 X	9 to 11
RESERVED	Col ums 10 to 17 are not utilized for the VEL record.	7X	12 to 18
RESERVED	Col ums 19 to 21 are reserved for future use.	3 X	19 to 21
Number of Dat a Col ums Present	Gi ves the number of data col ums present on this line after col um 23. The onl y choi ce is 3.	1x, 11	22 to 23
X-component of the satellite vel oci ty	The X -component of the satellite vel ocity (in the coordi nate system specifi ed in the FI LE/ DESCRI PTI ON block, for the SV Center-of-Mass) Units $=$ meters/second.	1X, F16. 7	24 to 40

Y - component of vel ocity	The Y - component of vel ocity. Uni ts = meters/second.	1X, F16. 7	41 to 57
Z-component of vel ocity	The Z-component of vel ocity. Uni ts = meters/second.	1X, F16. 7	58 to 74
		Total 74	

NOTES: For each VEL record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-formatted (i.e., each dat a val ue is separated by one or more bl ank spaces). However, the 3 -char acter record type code, the 3-char acter satellitelD, and the Number of Dat a Col ums Present (i.e., all of the pertinent fiel ds in col ums 2 to 23) must be read according to the fixed formats given above. To avoid redundancy, the satellite event flag, the predicted/observed flags, and the maneuver flag, are not used for the VEL record.
The Nunber of Data Col ums Present val ue in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The maximum number of data val ues for the above VEL record is 3. The only possible choi ce is 3 .

4. 8 CLK Record

Present	23. The onl y choi ce is 3 .		
Satellite Clock Correction	The satellite cl ock correction. Units $=$ microseconds.	1X, F16. 7	24 to 40
		Tot al 40	

NOTES: For each CLK record used in the EPHEMERI S/ DATA block, the data after col umm 23 must be read free-formatted (i.e., the data val ue is separated by one or more bl ank spaces from col 23). However, the 3 -character record type code, the 3 -character satelliteld, the satellite event
flag, the predicted-clock flag, and the number of data col ums listed (i.e., all of the pertinent fields in col ums 2 to 23) mist be read according to the fixed formats given above. To avoid redundancy, the predicted- orbit flag, and the maneuver flag, are not used for the CLK record.
The Satellite Event Flag in col umm 11 can be ' E ' or bl ank. ' E ' indicates that sometime bet ween the previ ous epoch and the current epoch, or at the current epoch, a satellite event occurred. A bl ank means either no event occurred, or it is unknown whet her any event occurred. The three types of satellite events currently defined are:
CLOCK event (e. g., a clock swap on a satellite),
PHASE event (e.g., a si gnal phase shift on a satelite),
POVER event (e. g., a power boost to one or more signal s froma satellite).
This flag shoul d onl y be used for a CLK record if a CLOCK event occurs. Additional details regarding a particul ar clock event for a satellite can be placed in a SATELLI TE/ EVENT bl ock, prior to the EPHEMERI S/ DATA bl ock.

The Nunber of Data Col ums Present val ue in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The maximum number of data val ues for the above CLK record is 1 . The only possible choi ce is 1.

4. 9 CRT Record

__Fi el d_	Description_	For mat	Col s_
First Character	Si ngle blank character in col one. No other character than ' is al I owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: CRT).	A3	2 to 4
RESERVED	The fifth col um is left bl ank.	1X	5 to 5
Satellite ID	First character represents a constel lation type. The I ast two are the PRN or slot number (e.g., G02 for GPS, or R02 for GLONASS). For LEOS see: http://cddi s. nasa. gov/ sp3c_satlist.htmb.	A1, I 2.2	6 to 8
RESERVED	Col umms 9 to 11 are reserved for I ater use (in case I onger SV IDs become necessary).	1X	9 to 11
RESERVED	Col ums 10 to 17 are not utilized for the CRT record.	$7 \times$	12 to 18
RESERVED	Col ums 19 to 21 are reserved for future use.	3 X	19 to 21
Number of Data Col ums Present	Gi ves the number of data col ums present on this line after col um 23. Only possi ble choi ce is 1 .	1x, 11	22 to 23

NOTES: For each CRT record used in the EPHEMERI S/ DATA bl ock, the dat a after col umm 23 must be read free-formatted (i.e., the data val ue is separated by one or more bl ank spaces from col 23). However, the 3 -character record type code, the 3 -character satellitelD, and the Number of Data Col ums Present (i.e., all of the pertinent fields in col ums 2 to 23) must be read according to the fixed formats given above. To avoid redundancy, the satellite event flag, the predi cted/ observed flags, and the maneuver flag are not used for the CRT record.

The Number of Data Col ums Present val ue in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The maxi mum number of data val ues for the above CRT record is 1 . The only possi blechoi ce is 1.

4. 10 ATT Record

__Fi eld_	Descripti on	_For mat	Col s_-_
First Character	Si ngle bl ank character in col one. No other character than ' ' is alI owed.	1X	1 to 1
Record Type	The 3-character Record Type code (for this record type: ATT).	A3	2 to 4
RESERVED	The fifth colum is left blank.	1x	5 to 5
Satellite ID	First character represents a constellation type. The I ast two are the PRN or slot number (e.g., G02 f or GPS or R02 for GLONASS). For LEOS see: http: // cddi s. nasa. gov/ sp3c_satilist. ht mb.	A1, 12. 2	6 to 8
- 'ESSERVED $^{-}$	later use (in case I onger SV IDS become necessary).	उX	9 ${ }^{-10}{ }^{-1}{ }^{1}$
RESERVED	Col ums 10 to 17 are not utilized for the ATT record.	7X	12 to 18
RESERVED	Col umms 19 to 21 are reserved for future use.	3 X	19 to 21
Number of Dat a Col ums Present	Gi ves the number of dat a col ums present on this line after col um 23. Onl y possi ble choi ce is 4.	1x, 11	22 to 23
q0 part of the quat er ni on	The q0 or scal ar part of the quat er ni on. The four parts of the quat er ni on provide the transf ornati on from spacecraft body frame coor di nates to the f rane specifi ed an by the COORD SYSTEM I abe FI LE/ DESCRI PTI ON bl ock. ORBEX will fol low the quat er ni on notation ($\mathrm{q0}, \mathrm{q1}, \mathrm{q2}$, q3) out 1 i ned in [Kui pers 1999] and [Mbntenbruck 2000].	1X, F19. 16	10 to 29

q1 part of the quater ni on	The q1 or x-component part of the quat er ni on.	1X, F19. 16	30 to 49
q2 part of the quat er ni on	The $q 2$ or y -component part of the quat er ni on.	1X, F19. 16	50 to 69
q3 part of the quater ni on	The q3 or z-component part of the quat er ni on.	1X, F19. 16	70 to 89
		Tot al 89	

NOTES: For each ATT record used in the EPHEMERI S/ DATA bl ock, the data after col umm 23 must be read free-fornatted (i.e., each data val ue is separated by one or more bl ank spaces). However, the 3 - character record type code, the 3-char acter satellitelD, and the Number of Data Col ums Present (i.e., all of the pertinent fields in col ums 2 to 23) must be read according to the fixed formats' gi ven above. To avoid redundancy, the satel lite event flag, the predicted/ observed flags, and the maneuver flag are not used for the ATT record.
The Nunber of Data Col ums Present val ue in col um 23 gi ves the number of data val ues that are actually listed for this satellite and this particular record type. The maximum number of data val ues for the above ATT record is 4 . The only possible choi ce is 4.

5. EXAMPLES

The following pages show some example ORBEX files.

- SATELLI TE/IDAND DESCRI PTI ON

${ }_{601}$	99999. 99	99999999. 999	OB OB 2009		0	0				7-23-45	
G02	8. 48	17. 304	OB OB 2009	47	0	0		02009	4	72345	
003	6. 06	18. 410	OB OB 2009	47	0	0		02009	4	72345	
G04	8. 17	20.087	OB OB 2009	47	0	0		02009	4	72345	
R21	9. 28	99999999. 999	OB OB 2009		0	0		02009	4	72345	
R22	21. 41	99999999. 999	OB OB 2009		0				4	72345	
R23	37.47	99999999. 999	OB OB 2009	4	0	0		02009	4	72345	
$\begin{aligned} & \text { R24 } \\ & \text { R } 10 \end{aligned}$	99999. 99	99999999. 999	OB OB 2009	47	0	0		02009	4	72345	

 $\%$ ORBEX 0.09

+SATELLI TE/ID AND-DESCRI PTI O
*ID
SATELITITE-DESCRI PTI O
DESCRI PTI ON
$\begin{array}{cl}\text { G02 } & \text { BLCK } 11 \text { R- } \\ \text { G03 } & \text { BLOCK } \\ \text { G04 } & \text { BLOCK }\end{array} 11$ A

$$
\begin{aligned}
& \begin{array}{l}
\text { IGS ULTRA- RAPI D ORBI T COMBI NATI ON 15262_06 } \\
\text { IGS Anal ysi } \text { Cent er Coor di nat or }
\end{array}
\end{aligned}
$$

Example 3. An example of an orbit with two GPS satellites and one LEO satellite. Several of the optional header bl ocks are present.
Note al so the record types being used: POS, VEL, CLK, and ATT. $\begin{array}{ll}\text { \%-ORBEX } & 0.09\end{array}$ \% DESCRI PTI ON
CRATED BY
CREATI ON DATE
INTI EXAMPLE GPS + LEO ORBIT d+p pc $($ g gsac. nar ni a. gov
$\begin{array}{llll}2002 & 12 & 29 & 0 \\ 0\end{array}$ 1 RREGULAR
I GSO5

$$
\begin{aligned}
& \text { FIT } \\
& \text { POS VEL CLK ATT } \\
& \text { METERS } \\
& \text { CENER OF- MASS } \\
& \text { METERS SEC } \\
& \text { M CROSECOND }
\end{aligned}
$$

SRBT TYPEC TYPES

\square

Example 4. An example of an IGS file with only satellite at titude information.
Note that the only record type being used is: ATT. \%-ORBEX 0.09

DESCRI PTI ON
+FI LE/ DESCRI PTI ON
+FI LE/ DESCRI PI
DESCRI PT ON
CREAATE BY
CREAI ON DATE
INTI DATA INPUT DATA
CONTACT
TI ME SYSTEM
STARTTIME
END TTM ME EPOC̄H I NTERVAL
COORD- SYSTEM
FRAME TYPE
TYPES
TION
AND

6. ACKNOWLEDGEMENTS

The authors would especially like to thank Urs Hugentobler, Henno Boomkamp, Jim Ray, Gerd Gendt, Jan Kouba, and Ben Remondi for many insightful e-mail discussions, and for their advice regarding users’ needs and formatting options.

The authors would also like to thank the following individuals who submitted their initial ideas and suggestions about what might be needed in a future IGS orbit format:

Willy Bertiger, Yehuda Bock, Kevin Choi, Oscar Colombo, Rolf Dach, Mark Davis, Clyde Goad, Jake Griffiths, Heinz Habrich, Philip MacFarland, Gerry Mader, Michael Meindl, David Munton, Erricos Pavlis, David Rainwater, Brent Renfro, Ignacio Romero, Ralf Schmid, Eun Hwan Shin, Mark Schenewerk, Tim Springer, Robert Weber, Robert Wong, and Sunpil Yoon.

7. REFERENCES

Gendt, G., 2004: [IGSMAIL-5000] Switch-over to sp3-c format for IGS orbits. http://igscb.jpl.nasa.gov/mail/igsmail/2004/msg00224.html

Gendt, G., 2004b: [IGSMAIL-5008] Some information on the error codes given in the sp3-c. http://igscb.jpl.nasa.gov/mail/igsmail/2004/msg00231.html

Gendt, G., 2006: [IGSMAIL-5490] Change in SP3 header comment line / Clock RINEX. http://igscb.jpl.nasa.gov/mail/igsmail/2006/msg00213.html

GLONASS ICD, 2008: Edition 5.1, Retrieved April 27, 2010 from
http://www.GLONASS-ianc.rsa.ru
Gurtner, W., 2000: RINEX: The Receiver-Independent Exchange Format, GPS
World, Volume 5, Number 7, 48-52. Also available from:
ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt
Hilla, S., 2007: The Extended Standard Product 3 Orbit Format (SP3-c), (12 February 2007). Available from: ftp://igs.org/pub/data/format/sp3c.txt

Hilla, S., 2016: The Extended Standard Product 3 Orbit Format (SP3-d), (21 February 2016). Available from: ftp://ftp.igs.org/pub/data/format/sp3d.pdf

IGEX98 SP3-b format [IGEX Mail-0042, SP3 Modifications (corrigenda)] can be viewed at http://igscb.jpl.nasa.gov/mail/igexmail/1998/msg00041.html

Kuipers, J. B. 1999: Quaternions and Rotation Sequences: A primer with Applications to Orbits, Aerospace and Virtual Reality, Princeton University Press, Princeton, New Jersey.

Montenbruck, O., 2000: Quaternion Representation of BIRD Orientation and Reference System Transformations, DLR-GSOC TN 00-03, http://www.weblab.dlr.de/rbrt/pdf/TN_0003.pdf
rcvr_ant.tab file, 2010:(the source for the satellite antenna type names; e.g. BLOCK IIR-B, GLONASS-M, etc.). Available from: http://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab

Remondi, B. W. 1989: Extending the National Geodetic Survey Geodetic Orbit Formats, NOAA Technical Report 133 NGS 46, 85 pp.

Remondi, B. W., 1991: NGS Second Generation ASCII and Binary Orbit Formats and Associated Interpolated Studies, Proceedings of the Twentieth General Assembly, International Union of Geodesy and Geophysics, Vienna, Austria, August 11-24, 1991, 28 pp.

Rothacher, M. and Schmid, R., 2006: ANTEX: The Antenna Exchange Format Version 1.3 (20 September 2006). Forschungseinrichtung Satellitengeodäsie, TU München. Available from: http://igscb.jpl.nasa.gov/igscb/station/general/antex13.txt

SINEX - Solution Independent Exchange Format, Version 2.10 (September 15, 2006). Available from: http://igscb.jpl.nasa.gov/igscb/data/format/sinex_v210_proposal.pdf

Spofford, P. R. and Remondi, B. W., 1994: The National Geodetic Survey Standard GPS Format SP3. (SP3-a format) available from the IGS website: http://igscb.jpl.nasa.gov/igscb/data/format/sp3_docu.txt

A list of identifiers for Low-Earth Orbiting satellites can be viewed at http://cddis.gsfc.nasa.gov/sp3c_satlist.html

8. REVISION HISTORY

12 May 2009: Initial version written (0.01).
12 June 2009:
10 July 2009:
11 August 2009:
24 September 2009:
27 November 2009:
22 January 2010:
7 May 2010:
30 April 2019:
Additional text added (0.02).
Clarifications added for certain header blocks (0.03).
Modifications to ATT record type (0.04).
Shorten FILE/DESCRIPTION block, add flags (0.05).
Combine Origin/Def. and Center-of-Mass/Info blocks (0.06).
Moved examples to back. ":" marks where PCS flags begin (0.07).
Added good/bad flags, modified Sec. 1 \& 2, added Fig 1. (0.08).
Removed good/bad flags, allowed for ATT-only files (0.09).

