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Sun-nadir-steering (1/2) 

– L-band antenna needs to be pointed 
toward geocenter; solar panels have 
to be perpendicular to Sun direction 

– Orientation (“attitude”) needs to be 
continuously adjusted through yaw 
and pitch control 

– ADCS provides sensors (Earth, Sun, 
Gyro) and effectors (reaction wheels, 
torque rods) 
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Sun-nadir-steering (2/2) 
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Today’s focus 

– Shadow-crossing maneuvers: How does GPS Block IIF S/C control its yaw 
attitude when solar sensors’ view of the Sun is obstructed by the Earth / 
the Moon? 

 

 

 

 

– Noon-turn maneuver: How does S/C perform its noon-turn to keep +X side 
facing the Sun? 

Yaw angle is crucial for precise satellite antenna phase centre and clock modeling 
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Estimated GPS IIF satellite antenna PCVs 
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Evidence for GPS IIF yaw attitude modeling issues 
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Epoch-wise yaw angle estimation 

 
 

– 30-sec code & phase measurements 
from global IGS tracking network 

– 1st step: IGS-like GNSS analysis 

– 2nd step: Resolving satellite clocks & 
phase centre positions epoch-by-epoch 
(“reverse kinematic point positioning”) 

– “Nominal” yaw attitude model employed 

– Yaw error reflected in horizontal PCOs 
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Midnight-turn regime (1/2) 

– Linear drift in yaw angle estimates as 
soon as S/C enters umbra 

– S/C is rotating around its z-axis with 
nearly constant rate (here: ≈ 0.06º/s) 

– S/C keeps “natural” sense of rotation 
due to yaw bias which is set to have 
the same sign as β-angle 

– Yaw angle upon shadow exit may be off 
from “nominal” value forcing S/C to 
perform short post-shadow recovery 
maneuver (< 5 min) 
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Midnight-turn yaw-rate estimates (1/2) 

– Yaw-rate estimates for 228 eclipse 
events (SVN-62: #176, SVN-63: #52) 

– Yaw-rate varies through the eclipse 
season; the lower the β-angle, the 
higher the rate 

– Estimates for β > 0° closely match 
thereoretical expectations; values for 
β < 0° tend to be higher as expected 

– Difference between high rate (β < 0°) 
and low rate (β > 0°) values of 
0.005°/s 
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Midnight-turn yaw-rate estimates (2/2) 

– Yaw-rate parameter can be well 
described by two “block-specific” 2nd 
order polynomials 

– De-trended rate estimates exhibit RMS 
of ±0.0014°/s 

– Yaw rate uncertainty translates into 
uncertainty in yaw angle of ±5° at the 
end of a 55-min eclipse event 
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“Nominal” attitude model vs. new attitude model 
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Noon-turn regime 

– S/C cannot keep up with required yaw 
rate, if |β| < 4.5° 

– Estimated and “nominal” yaw angle  
diverge under small negative β-angle 
(-0.9° < β < 0°); ∆ψ adds up to 360° 

– Linear drift in IGS clock solutions in 
the range of 0.4 ns (0.12 m) due to 
phase wind-up mismodeling 
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Noon-turn yaw-rate estimates 

 

 

 

– Yaw-rate estimates for 81 noon-turn 
events (SVN-62: #63, SVN-63: #18) 

– S/C yaws about twice as fast as 
during shadow crossing 

– Discontinuity at β = -0.9°; difference 
between high and low rate values of 
0.01°/s 

– Estimates vary by 5%; repeatability 
four times worse than midnight rates 
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Moon eclipse 

– Analysis of eight partial Moon eclipses 

– No yaw anomalies detected, except for 
40-min eclipse event on Aug 9, 2010 

– S/C reached darkest point on its 
eclipse passage at 21:58 UTC; angle 
between S/C-Moon and S/C-Sun is 
0.07° 

– S/C starts yawing with -0.08°/s; yaw 
reversal after 20 min; rotation at full 
rate until “nominal” attitude is resumed 
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Conclusions 

– Block IIF satellites follow a completely different yaw attitude scheme, 
when passing through the Earth's shadow, as the Block IIA and IIR S/C 

– Midnight-turn yaw rate is kept constant to the value needed to get the S/C 
near to its nominal attitude when leaving the Earth's shadow  

– S/C crossing shadow during middle of the eclipse season (β = 0°) needs 
to yaw almost two times faster as towards the edges of the eclipse season 

– Yaw angle can be precisely modeled using 2nd order yaw rate polynomial; 
model reduces phase residual RMS from up to ±7 cm down to ±1 cm 

– Noon-turn model still under development 

– Moon eclipses rarely affect attitude control 
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