IGS Preparations for the Next Reprocessing and ITRF

- what is IG2?
- who will contribute?
- expected performance
- remaining issues

Jake Griffiths, NOAA/National Geodetic Survey
Paul Rebischung, Institut Géographique National
Bruno Garayt, Institut Géographique National
Jim Ray, NOAA/National Geodetic Survey
How will IG2 Differ from IG1?

- more details at http://acc.igs.org/reprocess2.html

• Longer data span (~1994 thru mid-2012)
 – IG2 + operational prods thru 2013 -> IGS contribution to next ITRF

• Updated models, frames & methodologies
 – IERS 2010 Conventions
 – IGS08.SNX/igs08.atx framework (possibly updated version – IGb08)
 – AC SINEX files based on 1d TRF integrations (w/ consistent non-TRF products)
 • improve sampling of non-tidal loading displacements
 • reduces distortions in non-TRF prods (slightly noisier)
 • but no non-tidal atmospheric loading at obs eqn
 – some ACs to apply 2nd order iono corrections
 – Earth-reflected radiation pressure (albedo) modelling
 • reduce ~2.5 cm radial bias w.r.t. SLR [e.g. Urschl et al., 2007; Zeibart et al., 2007]
 – satellite-attitude modelling by all clock ACs
 – satellite antenna PCOs included in long-term TRF stacking

• Sub-daily alias and draconitic errors will remain
 – [e.g. Griffiths & Ray, in prep]
 – new diurnal & semi-diurnal EOP tide model needed

• Final preps and initial processing by mid-2012
• Expect to deliver SINEX files for next ITRF by late 2013
Expected AC and IG2 Products
- more details at http://acc.igs.org/reprocess2.html -

• Daily GPS orbits & satellite clocks
 – 15-minute intervals (SP3c format)
 – clocks in IGS timescale

• Daily satellite & tracking station clocks
 – 5-minute intervals (clock RINEX format)
 – in IGS timescale

• Daily Earth rotation parameters (ERPs)
 – from SINEX & classic orbit combinations (IGS erp format)
 – x & y coordinates of pole
 – rate-of-change of x & y pole coordinates (should not be used due to sensitivity to subdaily tidal errors)
 – excess length-of-day (LOD)

• Weekly (IG2 only) & daily terrestrial coordinate frames with ERPs
 – with full variance-covariance matrix (SINEX format)

• May also provide (TBD)
 – daily GLONASS orbits & satellite clocks
 – 30-second GPS clocks in IGS timescale
 – ionosphere maps, tropospheric zenith delay estimates
 – new bias products
Who will Contribute to IG2?
- more details at http://acc.igs.org/reprocess2.html -

• All IGS Final-product Analysis Centers:
 – CODE/AIUB – Switzerland
 – EMR/NRCan – Canada
 – ESA/ESOC – Germany
 – CNES/GRGS – Toulouse, France
 – GFZ – Potsdam, Germany
 – JPL – USA
 – MIT – USA
 – NGS/NOAA – USA
 – SIO – USA

• Plus 1 reprocessing Center
 – ULR – University of La Rochelle TIGA (tide gauges), France

• Plus 1 Center contributing to TRF only:
 – GFZ TIGA – Potsdam, Germany
<table>
<thead>
<tr>
<th>ANALYSIS CENTER</th>
<th>SYSTEM</th>
<th>OBS TYPE</th>
<th>ORBIT DATA ARC LENGTH</th>
<th>DATA RATE</th>
<th>ELEVATION CUTOFF</th>
<th>ELEVATION INVERSE WGTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>GPS + GLO</td>
<td>DbDiff (weak redundant)</td>
<td>24 + 24 + 24 h</td>
<td>3 min</td>
<td>3 deg</td>
<td>1/cos²(z)</td>
</tr>
<tr>
<td>EMR</td>
<td>GPS</td>
<td>UnDiff</td>
<td>24 h</td>
<td>5 min</td>
<td>10 deg</td>
<td>none</td>
</tr>
<tr>
<td>ESA</td>
<td>GPS + GLO</td>
<td>UnDiff</td>
<td>24 h</td>
<td>5 min</td>
<td>10 deg</td>
<td>1/sin²(e)</td>
</tr>
<tr>
<td>GFZ (& GTZ)</td>
<td>GPS + ?GLO?</td>
<td>UnDiff</td>
<td>24 + 24 + 24 h</td>
<td>5 min</td>
<td>7 deg</td>
<td>1/2sin(e) for e < 30 deg</td>
</tr>
<tr>
<td>GRG</td>
<td>GPS</td>
<td>UnDiff</td>
<td>24 h</td>
<td>5 min</td>
<td>10 deg</td>
<td>none</td>
</tr>
<tr>
<td>JPL</td>
<td>GPS</td>
<td>UnDiff</td>
<td>3 + 24 + 3 h</td>
<td>5 min</td>
<td>7 deg</td>
<td>none</td>
</tr>
<tr>
<td>MIT</td>
<td>GPS</td>
<td>DbDiff (weak redundant)</td>
<td>(SRPs over 9d)</td>
<td>2 min</td>
<td>10 deg</td>
<td>a² + (b²/sin²(e)) a,b from site residuals</td>
</tr>
<tr>
<td>NGS</td>
<td>GPS</td>
<td>DbDiff (redundant)</td>
<td>24 h</td>
<td>30 s</td>
<td>10 deg</td>
<td>[5 + (2/sin(e)) cm]²</td>
</tr>
<tr>
<td>SIO</td>
<td>GPS</td>
<td>DbDiff (weak redundant)</td>
<td>24 h</td>
<td>2 min</td>
<td>10 deg</td>
<td>a² + (b²/sin²(e)) a,b from site residuals</td>
</tr>
<tr>
<td>ULR</td>
<td>GPS</td>
<td>DbDiff (weak redundant)</td>
<td>24 h</td>
<td>3 min</td>
<td>10 deg</td>
<td>a² + (b²/sin²(e)) a,b from site residuals</td>
</tr>
<tr>
<td>ANALYSIS CENTER</td>
<td>NUTATION & EOPs</td>
<td>SRP PARAMS</td>
<td>VELOCITY BRKs</td>
<td>ATTITUDE</td>
<td>SHADOW ZONES</td>
<td>EARTH ALBEDO</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CODE</td>
<td>IAU 2000A<sub>r06</sub>; BuA ERPs</td>
<td>D,Y,B scales; B 1/rev</td>
<td>every 12 hr + constraints</td>
<td>nominal yaw rates used</td>
<td>E+M: umbra & penumbra</td>
<td>? applied ?</td>
</tr>
<tr>
<td>EMR</td>
<td>IAU 2000A<sub>r06</sub>; BuA ERPs</td>
<td>X,Y,Z scales stochastic</td>
<td>none</td>
<td>yaw rates estimated</td>
<td>E: umbra & penumbra</td>
<td>applied</td>
</tr>
<tr>
<td>ESA</td>
<td>IAU 2000; BuA ERPs</td>
<td>D,Y,B scales; B 1/rev</td>
<td>none; Along, Along 1/rev accelerations</td>
<td>nominal yaw rates used</td>
<td>E+M: umbra & penumbra</td>
<td>applied + IR</td>
</tr>
<tr>
<td>GFZ (& GTZ)</td>
<td>IAU 2000; GFZ ERPs</td>
<td>D,Y scales</td>
<td>@ 12:00 + constraints</td>
<td>yaw rates estimated</td>
<td>E+M: umbra & penumbra</td>
<td>applied + AT</td>
</tr>
<tr>
<td>GRG</td>
<td>IAU 2000; IERS C04 & BuA ERPs</td>
<td>D,Y scales; X & D 1/rev</td>
<td>stoch. impulse during ecl.</td>
<td>yaw rates estimated</td>
<td>E+M: umbra & penumbra</td>
<td>applied + IR</td>
</tr>
<tr>
<td>JPL</td>
<td>IAU 2000A<sub>r06</sub>; IERS C04</td>
<td>X,Y,Z scales stochastic</td>
<td>none</td>
<td>yaw rates estimated</td>
<td>E+M: umbra & penumbra</td>
<td>applied</td>
</tr>
<tr>
<td>MIT</td>
<td>IAU 2000; BuA ERPs</td>
<td>D,Y,B scales; B(D,Y) 1/rev</td>
<td>none; 1/rev constraints</td>
<td>nominal yaw rates used</td>
<td>E+M: umbra & penumbra</td>
<td>applied</td>
</tr>
<tr>
<td>NGS</td>
<td>IAU 2000; IGS PM; BuA UT1</td>
<td>D,Y,B scales; B 1/rev</td>
<td>@ 12:00 + constraints</td>
<td>none; del eclipse data</td>
<td>E+M: umbra & penumbra</td>
<td>applied + AT</td>
</tr>
<tr>
<td>SIO</td>
<td>IAU 2000; BuA ERPs</td>
<td>D,Y,B scales; D,Y,B 1/rev</td>
<td>none; 1/rev constraints</td>
<td>nominal yaw rates used</td>
<td>E+M: umbra & penumbra</td>
<td>applied</td>
</tr>
<tr>
<td>ULR</td>
<td>IAU 2000; BuA ERPs</td>
<td>D,Y,B scales; D,Y,B 1/rev</td>
<td>none</td>
<td>nominal yaw rates used</td>
<td>E+M: umbra & penumbra</td>
<td>applied</td>
</tr>
<tr>
<td>ANALYSIS CENTER</td>
<td>SOLID EARTH POLE</td>
<td>EARTH POLE</td>
<td>OCEAN LOAD</td>
<td>OCEAN POLE</td>
<td>OCEAN CMC</td>
<td>SUBDAILY EOPs</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CODE</td>
<td>IERS 2010; dehanttideinel.f</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004; hardisp.f</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010; subd nutation</td>
</tr>
<tr>
<td>EMR</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004; hardisp.f</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010</td>
</tr>
<tr>
<td>ESA</td>
<td>IERS 2010; dehanttideinel.f</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004; hardisp.f</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010 & PMsdnut.for</td>
</tr>
<tr>
<td>GFZ (& GTZ)</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010; PMsdnut.for</td>
</tr>
<tr>
<td>GRG</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010</td>
</tr>
<tr>
<td>JPL</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004; hardisp.f</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010</td>
</tr>
<tr>
<td>MIT</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010</td>
</tr>
<tr>
<td>NGS</td>
<td>IERS 2010; dehanttideinel.f</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004; hardisp.f</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010 & PMsdnut.for</td>
</tr>
<tr>
<td>SIO</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010</td>
</tr>
<tr>
<td>ULR</td>
<td>IERS 2010</td>
<td>eqn 23a/b mean pole</td>
<td>FES2004</td>
<td>none</td>
<td>sites & SP3</td>
<td>IERS 2010</td>
</tr>
<tr>
<td>ANALYSIS CENTER</td>
<td>GRAVITY FIELD</td>
<td>EARTH TIDES</td>
<td>EARTH POLE</td>
<td>OCEAN TIDES</td>
<td>OCEAN POLE</td>
<td>RELATIVITY EFFECTS</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>CODE</td>
<td>EGM2008; C21/S21 due to PM</td>
<td>IERS 2010</td>
<td>IERS 2010</td>
<td>IERS 2010 – FES2004</td>
<td>none</td>
<td>dynamic corr & bending applied</td>
</tr>
<tr>
<td>EMR</td>
<td>EGM2008</td>
<td>IERS 2010</td>
<td>IERS 2010</td>
<td>IERS 2010 – FES2004</td>
<td>none</td>
<td>no dynamic corr; bending applied</td>
</tr>
<tr>
<td>GFZ (& GTZ)</td>
<td>JGM3; C21/S21 due to PM</td>
<td>IERS 2010</td>
<td>IERS 2010</td>
<td>IERS 2010 – FES2004</td>
<td>none</td>
<td>no dynamic corr & bending applied</td>
</tr>
<tr>
<td>GRG</td>
<td>EIGEN GL04S; C21/S21 due to PM</td>
<td>IERS 2010</td>
<td>IERS 2010</td>
<td>IERS 2010 – FES2004</td>
<td>none</td>
<td>dynamic corr; bending applied</td>
</tr>
<tr>
<td>JPL</td>
<td>EGM2008; C21/S21 due to PM; C20, C30, C40</td>
<td>IERS 2010</td>
<td>IERS 2010</td>
<td>IERS 2010 – FES2004</td>
<td>none</td>
<td>dynamic corr & eqn 6.23a, bending applied</td>
</tr>
<tr>
<td>MIT</td>
<td>EGM2008; C21/S21 due to PM</td>
<td>IERS 1992; Eanes Love #</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>no dynamic corr; bending applied</td>
</tr>
<tr>
<td>SIO</td>
<td>EGM2008; C21/S21 due to PM</td>
<td>IERS 1992; Eanes Love #</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>no dynamic corr; bending applied</td>
</tr>
<tr>
<td>ULR</td>
<td>EGM2008; C21/S21 due to PM</td>
<td>IERS 1992; Eanes Love #</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>no dynamic corr; bending applied</td>
</tr>
</tbody>
</table>
Expected Performance of IG2?
- WRMS of AC repro1 orbits wrt IG1 -

(smoothed)

Weighted RMS [mm]

Time [GPS weeks]

IGS05

Courtesy of G. Gendt (GFZ Potsdam)
Expected Performance of IG2?
- WRMS of AC repro1 orbits wrt IG1 -

Large scatter for some ACs in early IG1—expected to be improved in IG2 contributions

Courtesy of G. Gendt (GFZ Potsdam)
Expected Performance of IG2?

- WRMS of AC repro1 orbits wrt IG1 -

inter-AC agreement approaches ~2.5 cm by late 2007

Courtesy of G. Gendt (GFZ Potsdam)
Expected Performance of IG2?
- WRMS of current AC orbits wrt IGS -

![Graph showing expected performance of IG2 with WRMS values for different periods](Image)
Expected Performance of IG2?

- WRMS of current AC orbits wrt IGS -

inter-AC agreement reaches 1.5 cm

Weighted RMS [mm]

Time [GPS weeks]
Expected Performance of IG2?

- WRMS of current AC orbits wrt IGS -

Scatter of individual ACs decreases for short time after IGS08, but grows again as “core” network degrades—IG2 should have full RF network.
Expected Performance of IG2?
- Rotational scatter of AC orbits wrt IGS -

- First ~15 weeks of IGS08, scatter in most AC rotations quite small
 - increase in scatter correlated w/decrease in # of “core” stations
- Rotational errors for single AC distort the combined orbit (see RY for ESA @ ~1660)
 - long-term orientation of IG2 orbit frame maybe improved over IG1, but rotational scatter still dominates
• Lack of an independent “truth” for IGS orbits
 – can compute discontinuities between daily orbit sets
 – doing so aliases sub-daily differences into longer-period signals
 – approach can reveal systematic errors

• Orbit jumps
 – fit orbits for each day with BERNE (6+9) orbit model
 – parameterize fit as $X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$ plus 3 SRPs per SV component
 – fit 96 SP3 orbit positions for each SV as pseudo-observations for Day A
 – propagate fit forward to 23:52:30 for Day A
 – repeat for Day B & propagate backwards to 23:52:30 of day before
 – compute IGS orbit jumps at 23:52:30

• Compute IGS orbit jumps over recent ~5.6 yr span

Expected Performance of IG2?
- IGS orbit jumps as measure of orbit inaccuracy -
Expected Performance of IG2?
- *IGS orbit jumps as measure of orbit inaccuracy (cont.)* -

- IGS orbit jumps computed from Berne model fit to adjacent days
 - compute spectra for each SV orbit jump set, stack & smooth
 - “calibrated” for errors due to (fit + extrapolation) method
Expected Performance of IG2?
- IGS orbit jumps as measure of orbit inaccuracy (cont.) -

- IGS orbit jumps computed from Berne model fit to adjacent days
 - compute spectra for each SV orbit jump set, stack & smooth
 - “calibrated” for errors due to (fit + extrapolation) method

peaks at mostly odd harmonics of GPS draconitic

peaks in ~29, ~14, ~9 and ~7 d at alias frequencies of beating sub-daily EOP tide errors

[Griffiths & Ray, in prep]
Expected Performance of IG2 TRFs?
- RMS of Current AC TRFs wrt IGS -

• Improvement in precision expected from:
 – horizontal tropo gradients estimated by all ACs
 – 2nd order iono corrections
 – Earth-reflected radiation pressure (albedo) modelling

• Improvement in accuracy expected from:
 – igs08.atx (depending on antenna type)

• Switch to daily AC TRFs:
 – should not impact quality of weekly combined TRFs (input to ITRF)
IG2 contribution to the next ITRF

• Contribution to the ITRF scale rate?
 – satellite PCOs will be included in combination & stacking of IG2 TRFs.
 – assumption that PCOs are constant → “intrinsic GNSS scale rate”

• No contribution to the ITRF origin yet
 – remaining unmodeled orbital forces
 – origins of IG2 TRFs likely not reliable enough

• Systematic errors will remain!
 – main source: antenna calibrations
 • > 1 cm errors revealed at stations with uncalibrated radomes
 • few mm errors likely at stations with “converted” antenna calibrations
 – will cause trouble in use of local ties for ITRF colocation sites
 • consider to exclude in next ITRF
Summary (1/2)

- Latest models, frames & methods to have largest impact since IG1
 - IERS 2010 Conventions
 - IGS08/igs08.atx framework
 - Earth-reflected radiation pressure (albedo) modelling
 - sub-daily & draconitic signatures will remain

- To result in full history of IG2 products (1994 to present)
 - truly daily products (assuming all ACs remove overconstraints & smoothing):
 - GPS orbits & SV clocks (SP3c) @ 15 min intervals
 - GPS SV and station clocks (clock RINEX) @ 5 min intervals
 - Earth Rotation Parameters (IGS ERP)
 - terrestrial coordinate frames (IERS SINEX)
 - expected delivery for next ITRF -> late 2013

- And possibly some ancillary products
 - GLONASS orbits & clocks
 - 30-second SV & station clocks
 - bias products
Summary (2/2)

• Generally, IGS aims for ~1 cm orbit & ~1 mm terrestrial accuracies
 – to meet needs of most demanding user applications

• Performance of current IGS products quite good
 – GPS orbits
 • overall <2.5 cm (1D)
 • errors dominated primarily by rotational scatter in AC orbital frames
 • random noise ~1.6 cm
 • sub-daily alias and draconitic errors from IERS diurnal/semi-diurnal tides
 – EOPs [Ray & Griffiths; G5.1 Monday AM]
 • PM-x & PM-y: <30 μas
 • dLOD: ~10 μs
 – terrestrial frames (weekly)
 • ~2 mm N&E
 • ~5 mm U

• IG2 quality should approach current IGS prods, maybe better
 – quality for later (~2000 -> present) IG2 products will be best
 – early IG2 probably better than IG1 equivalents, but not as good as later IG2
Extra Slides