

Preliminary Analysis of IGS 2nd Reprocessed Orbits

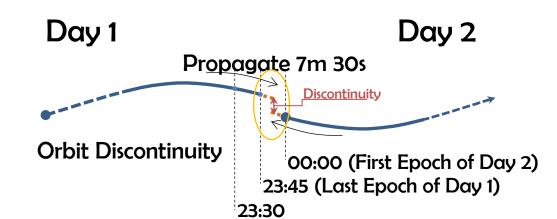
Kevin Choi

NOAA/National Geodetic Survey, Silver Spring, MD, USA

Abstract

International GNSS Service (IGS) has contributed to the International Terrestrial Reference Frame by reprocessing historic GPS network data and submitting Terrestrial Reference Frame solutions and Earth Rotation Parameters. For the 2nd reprocessing campaign, Analysis Centers (ACs) used up to 21 years of GPS observation data with daily integrations. IERS2010 conventions are applied to model the physical effects of the Earth. Total nine solutions have participated (7 Global AC solutions, and 2 Tide Gauge solutions) by reprocessing entire time series in a consistent way using the latest models and methodology. IGS combined daily SINEX TRF and EOP combinations have already been submitted to the IERS for ITRF2013. This presentation mainly focuses on the preliminary quality assessment of the reprocessed AC orbits. Quality of the orbit products are examined by examining the repeatability between daily AC satellite ephemeris. Power spectral analysis shows the background noise characteristics of each AC products, and its periodic behaviors.

IGS Reprocessing Campaigns


	1 st Reprocessing	2 nd Reprocessing	
Duration	1994 - 2007	1994 - 2014	
Reference Frame	IGS05 (aligned to ITRF2005)	IGb08 (aligned to ITRF2008)	
IERS Convention	IERS 2003	IERS 2010	
Geopotential Field	EGM96	 EGM2008 time-variations of low-degree coefficients mean pole trajectory model 	
Antenna calibration	IGS05 ANTEX (absolute calibration)	IGS08 ANTEX (absolute calibration)	
Tropospheric delay model	GPT / GMF	GPT2 / VMF1_HT	
Higher order Ionosphere	Not applied	IERS 2010 & IGRF11 (2 nd order)	
Ocean Pole Tide (Station Displ.)	Not applied	IERS 2010	
Orbit Dynamics	No Earth Albedo model	Earth Albedo model [1][2][3] Block specific SV thrusting (ERPFBOXW.f)	

Full list of recommendations are described n IGS ACC webpage [4].

Repro2 Contributions

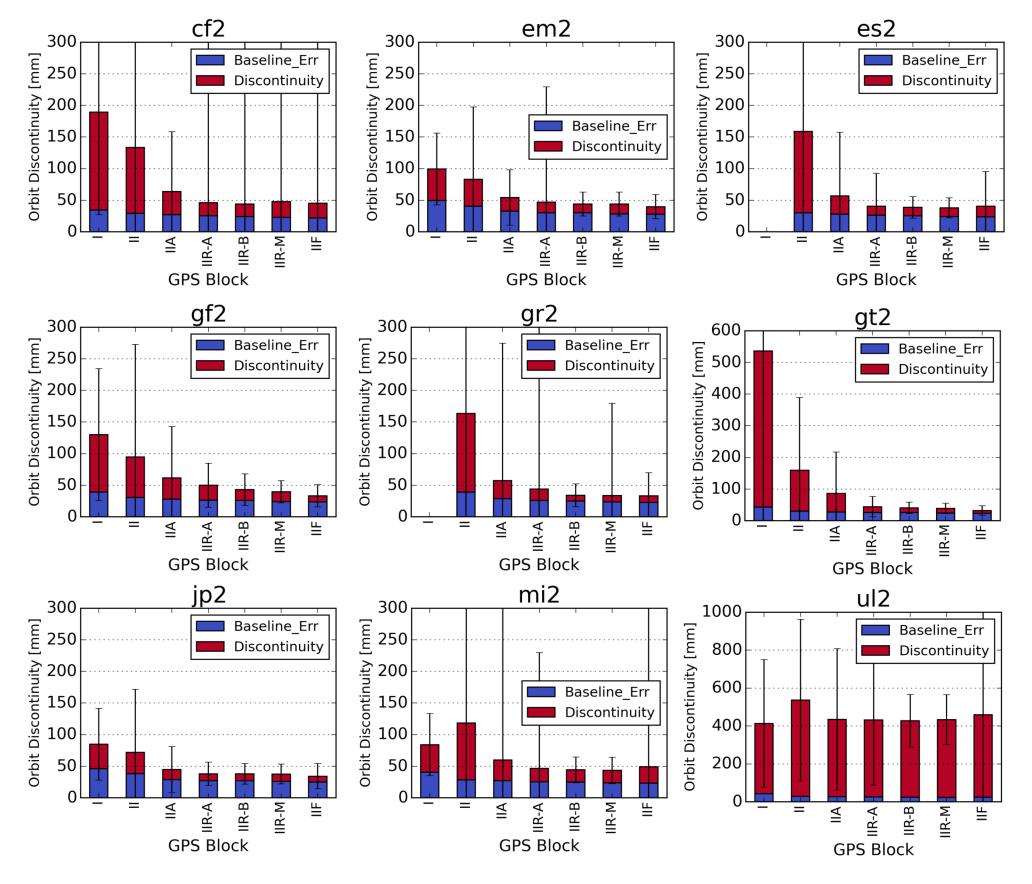
	AC Contribution	Info	
Orbits	Daily sp3c format	15-min sampling rate	
Clocks	Daily SV and station clocks	5-min rate 30-sec rate for SV clocks	
Earth Rotation Parameters (ERP)	Pole X, Y coord. Pole X, Y rates Excess length-of-day	Official product from SINEX combination	
Terrestrial Coordinates	Daily SINEX	With full variance-covariance matrix SV antenna Z-offset	
	1100 1200 1300 1400 1500	10 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9	

Orbit Discontinuity at Day Boudary

Day 1 P	Propagate 15n
Propagation Err	or
Estimation	23:45 (l 23:30

(Last Epoch of Day 1)

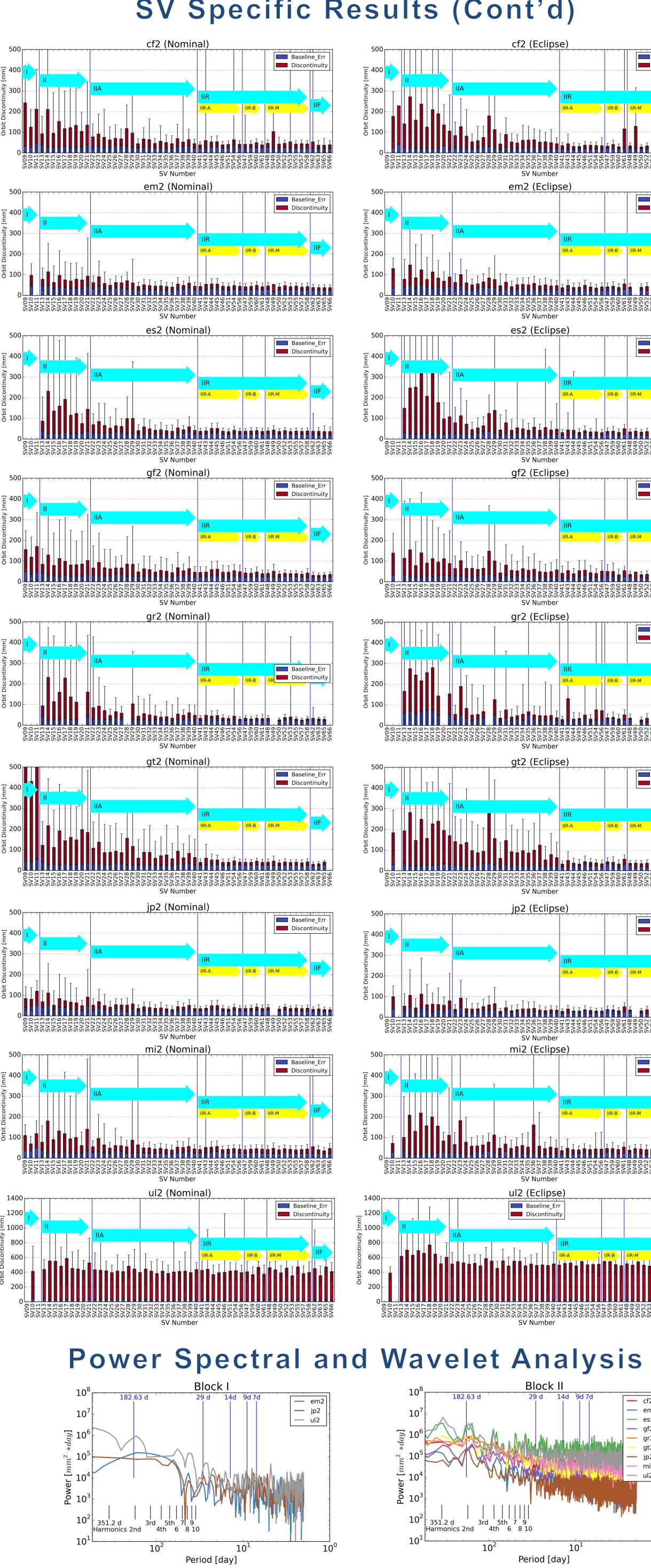
- Orbit files (sp3 format) have 15-minute interval.
- Propagate orbits with BERNE 6+9 orbit model.
- Orbit discontinuity at day boundary
 - Propagating orbit forward from 23:45 with 450 sec interval.
 - Propagate backward from 00:00 of the next day file.
 - Then the positional difference at the mid-point (23:52:30) is calculated.
- Determining model errors
- Propagating the orbit 15 min to the known epoch (23:30 to 23:45) will give us the baseline error estimation for each SV. Since this propagation time is twice as long as the actual discontinuity experiment, it has to be adjusted.
- Followed steps described in Griffiths and Ray (2009) [5] for fair comparison.

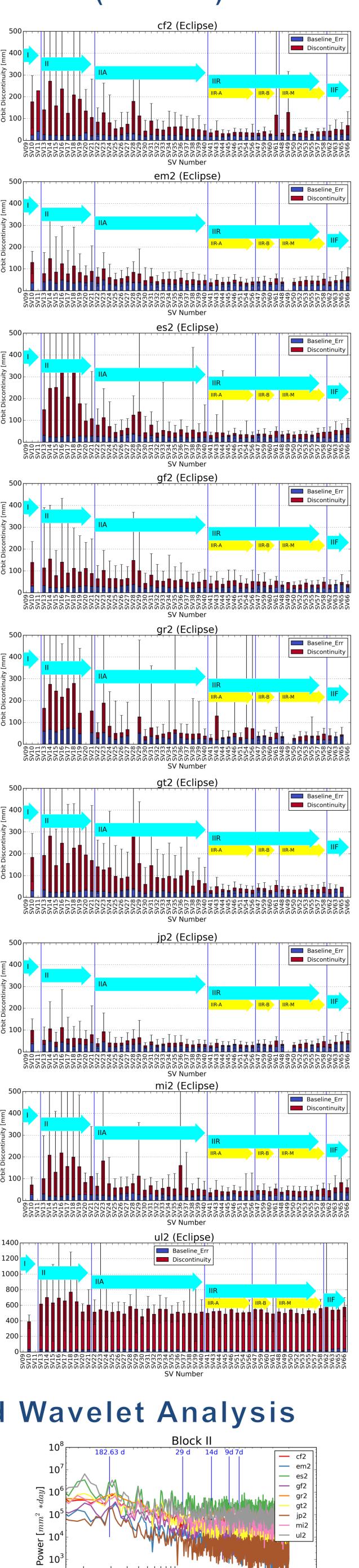

GPS Satellites in Repro2

	BLOCK	SV Numbers	Duration in Repro2
	I	SV09 SV10 SV11	Beginning - 1996
	11	SV13 SV14 SV15 SV16 SV17 SV18 SV19 SV20 SV21	Beginning - 2007
	IIA	SV22 SV23 SV24 SV25 SV26 SV27 SV28 SV29 SV30 SV31 SV32 SV33 SV34 SV35 SV36 SV37 SV38 SV39 SV40 SV40	
	IIR-A	SV41 SV43 SV44 SV45 SV46 SV51 SV54 SV56	1997 - Present
	IIR-B	SV47 SV59 SV60 SV61	2004 - Present
	IIR-M	SV48 SV49 SV50 SV52 SV53 SV55 SV57 SV58 SV58 SV53	2005 - Present
	lif	SV62 SV63 SV65 SV66 SV67 SV68 SV64 SV69	2010 - Present

Color index:

Currently operational Currently Operational but not in Repro2

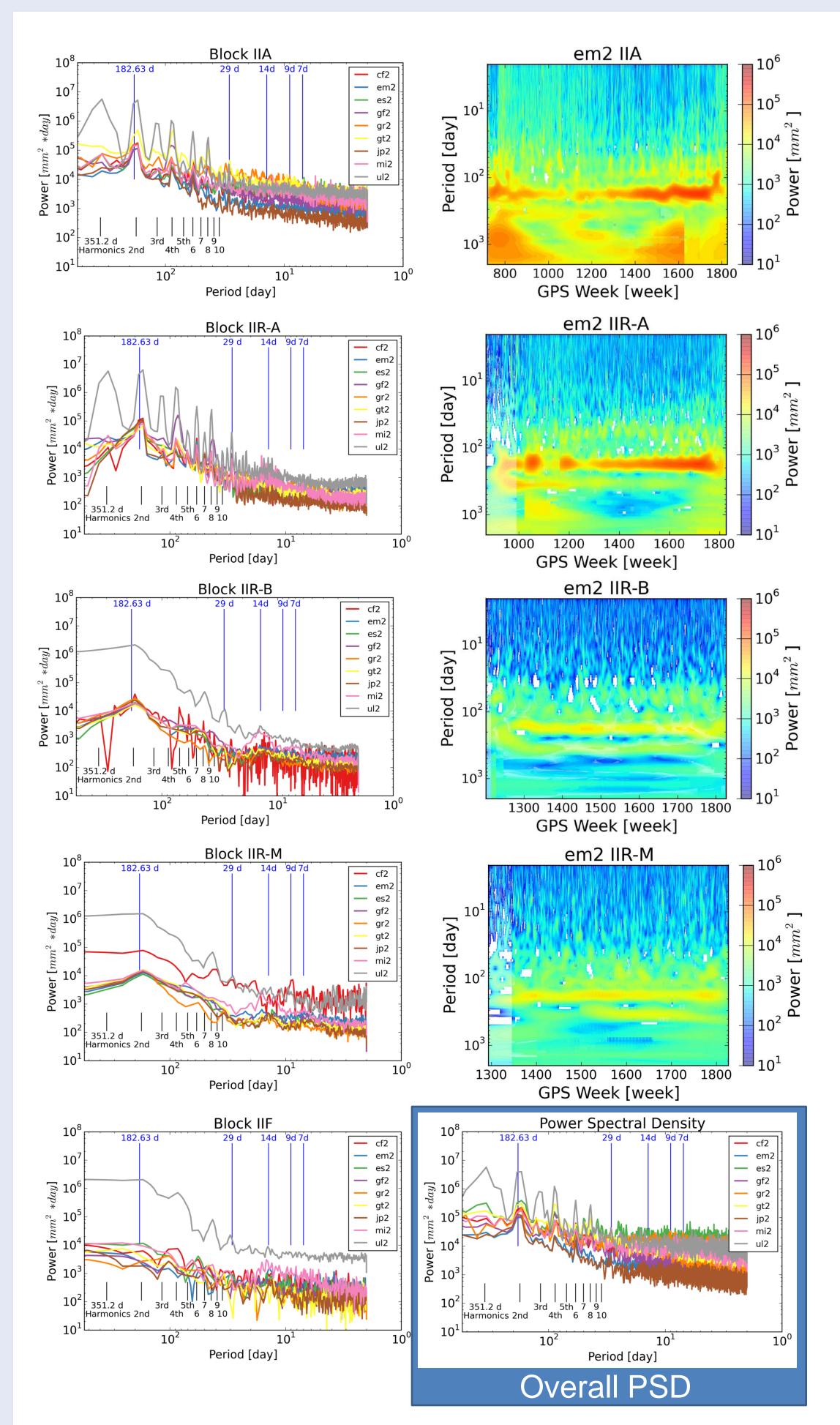

Block Specific Results



SV Specific Results

• CODE (cf2), ESA (es2), GRGS (gr2), GFZ TIGA (gt2), and MIT (mi2) solutions show much higher orbit jump during eclipse mostly on Block II and IIA SVs • JPL (jp2) shows smallest orbit discontinuity (due to 3+24+3 arc length?) • Y-axis scale of ULR (ul2) plots are much bigger than other plots.

• Some ACs show increased orbit jump for Block IIF SVs during eclipse season.


Period [day]

SV Specific Results (Cont'd)

G2.2

EGU2015-14204

• Power Spectral Density is computed for each SV's orbit discontinuity and stacked for each block type.

• 2nd harmonic of draconitic year signal (Semi-annual) is clearly visible in all of the SV blocks (IIF spans too short to detect).

• Older blocks (Block I to IIR-A) show stronger harmonics.

• Semi-annual signals for block IIA and IIR-A are getting clearly stronger since ~wk1200.

• Overall, JP2 shows very stable and low orbit discontinuity at day boundary. Extra 3 hours of orbit fitting at each day boundary (3 hr before and 3 hr after) must have contributed to the results.

• UL2 shows most significant harmonic signals as well as higher orbit discontinuity at day boundaries.

References

- [1] C.J. Rodríguez Solano, (2009) Impact of Albedo Modelling on GPS Orbits, Master Thesis, Technische Universität München
- [2] U. Hugentobler et al., (2009) Impact of Albedo Modelling on GNSS Satellite Orbits and Geodetic Time Series, AGU 2009
- [3] C. Rodríguez Solano, (2011) Earth Radiation Pressure Model for GNSS Satellites, EGU 2011
- [4] <u>http://acc.igs.org/reprocess2.html</u>
- [5] J. Griffiths and J. Ray (2009) On the Precision and Accuracy of IGS Orbits, J Geod.