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Motivation 

•  Realize the terrestrial reference frame (TRF) using GPS alone. 
•  What is the potential contribution of GNSS data in a multi-technique 

combination? 
•  What are the strengths and weaknesses of GPS? 
•  What are the uncertainties in current realizations of the ITRF? 

•  Foundation of a “GPS-only frame” is accurate modeling of antenna 
phase variations (APV). 

•  All participants in network, but especially the GPS transmit antennas. 
•  APV models should be independent of any extant TRF. 
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Calibrating  the GPS Transmit Antennas 
 Using Data from Low Earth Orbiters (LEO) 

•  Treat LEO as “reference antenna 
in space” 

•  Choose candidate missions to 
minimize multipath 

•  TOPEX/POSEIDON (1992–2005) 
•  GRACE (2002–pr.) 

•  Use Precise Orbit Determination 
(POD) to provide constraints 

•  Scale constraint from dynamics (GM) 
•  No a-priori constraint to TRF (use 

fiducial-free GPS products) 
•  No troposphere 

•  Adopt pre-launch antenna APV 
calibrations of LEO antenna 

•  e.g., anechoic, antenna test range 

Pre-launch LEO APV Calibration Estimated GPS Transmit Antenna APV 
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GPS Transmitter Antenna Phase Variations (APV) from 
TOPEX/POSEIDON (T/P) and GRACE 

•  Combine results from T/P (1993) and GRACE 
(2003–2008) 

•  Perform daily dynamical POD using carrier phase 
(LC) only 

•  Save daily normal equations and combine after-
the-fact 

•  Estimate block-average APV for each GPS 
satellite antenna type (I, II/IIA, IIR-A, IIR-B/M, IIF). 

•  Treat T/P as reference antenna 
•  Capitalize on low phase multipath 

•  Choke ring on 4-m boom 
•  Use test-range measurements (Dunn and Young, 

1992) as a priori. 
•  Polynomial smoothing in elevation 

•  Allow only azimuthal adjustments to T/P APV  
•  GRACE APV adjusted 

•  Exploit satellites (Block IIA) tracked commonly by 
both GRACE and T/P. 

•  Provide means of communicating TOPEX reference 
to modern (IIR/IIF) satellites. 
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Antenna Phase Variations for GPS Satellite Blocks 

Block I 
(1978–1996) 

Block II/IIA 
(1989–pr.) 

Block IIR-A 
(1997–pr.) 

Block IIR-B/M 
(2003–pr.) 

 

Block IIF 
(2010–pr.) 

•  Note highly contrasting APV patterns for different satellite blocks. 
•  Against the backdrop of the evolving GPS constellation, mismodeled APV will manifest as scale 

instability (cf. Zhu et al., 2003; Ge et al, 2005). 

 

OFF-BORESIGHT ANGLE (DEGREES) 
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Realizing the TRF from GPS:  
Longarc Network Solution Strategy 

•  Internal (GPS) TRF compared to ITRF2008IGS08 using 7-param. Helmert transform. 
•  Also called “network shift” approach 
•  Origin shift (3D) and scale difference expose TRF errors in both (GPS and ITRF) frames. 

Element Selection 
Time span 1994–2012 (~18 yrs.) 
Orbit Arc Length 9 days, centered on GPS week (2-d overlap) 
Number of Terrestrial GPS Stations 40* (selected from stations deploying TurboRogue-style 

choke rings to improve homogeneity) 
Transmitter Antenna Calibration Model TOPEX-referenced GPS APV model: Block averages for 

all five GPS s/c antenna types: I, II/IIA, IIR-A, IIR-B/M, IIF 
Ground Receiver  Ant. Calibration Model JPL Ant. Test Range (Young and Dunn, 1992)  
A priori uncertainty on station positions 1 km (“fiducial free”, Heflin et al., 1992) 
Tracking data 5-min decimated LC (1-cm σ), smoothed PC (1 m σ) 
GPS Satellite POD Strategy 1 cpr UVW accelerations (U along sun-s/c vector);  

updated every 12 hrs. as random walk 
Phase ambiguities Integer resolution 
Earth orientation parameters Daily (random-walk) updates to X and Y pole. UT1 fixed 

to Bulletin A. 
* 40 qualifying stations not generally available for 1997 and earlier 
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ΔX Origin (vs. ITRF2008IGS08) 

Bias (2005) +4 mm  
Trend +0.1 mm/yr  

Annual 0.8 mm 
RMS Res 4.8 mm  

•  Bias < 5 mm 
•  Best repeatability on this (X) axis 

•  < 5 mm for weekly solutions 
•  Negligible drift (0.1 mm/yr) 
•  Annual geocenter variation < 1 mm 

•  Smaller than consensus estimates of  ~2 mm 
(e.g., Wu et al., 2012) 

 Wu et al., Geocenter motion and its geodetic and geophysical implications, J. Geodynamics 58, 44– 61, 2012  
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ΔY Origin (vs. ITRF2008IGS08) 

Bias (2005) +1 mm  
Trend –0.6 mm/yr  

Annual 4.4 mm 
RMS Res 5.4 mm  

•  Negligible bias (~1 mm at epoch) 
•  Drift < 1 mm/yr 

•  But pattern is not linear 
•  Annual geocenter variation: 4 mm 

•  Peaks in late November 
•  Consistent with consensus estimate 

 *Wu et al., Geocenter motion and its geodetic and geophysical implications, J. Geodynamics 58, 44– 61, 2012  

December 7, 2012 BH- 8 Fall 2012 AGU Meeting  © 2012 California Institute of Technology. Government sponsorship acknowledged. 



ΔZ Origin (vs. ITRF2008IGS08) 

Bias (2005) +7 mm  
Trend +0.3 mm/yr  

Annual 2.4 mm 
Draconitic 6.7 mm  
RMS Res 11.4 mm 

•  Centering on spin (Z) axis more difficult 
•  Weekly repeatability > 1 cm 

•  Prone to systematic GPS measurement 
errors (e.g., at draconitic year) 

•  Despite larger errors, bias and stability 
are excellent 

•  Annual geocenter variation: 2 mm 
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ΔScale (vs. ITRF2008IGS08) 

Bias (2005) –14 mm  
Trend +0.2 mm/yr  

Annual 0.5 mm 
Semi Ann 0.6 mm  
RMS Res 1.6 mm  

•  Scale stability crucial for studies of 
global sea level change 

•  Repeatability (weekly) of 1.6 mm  
•  Drift of +0.2 mm/yr (0.04 ppb/yr) 
•  Scale bias of –14 mm (~2 ppb) 

•  Affected by choice of model for ground (choke 
ring) antenna 

•  Ensemble local effects (e.g., multipath) also 
contribute 
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Next Steps: Group Delay Variations 

•  Use GRACE as 
reference antenna 

•  Embedded antenna 
preferred for group delay 

•  Block IIRs show 
important satellite-
specific variations. 

•  Legacy (Block II/IIA) 
satellites more consistent. 

 
Off-Nadir Angle (deg.) Off-Nadir Angle (deg.) 

Off-Nadir Angle (deg.) Off-Nadir Angle (deg.) Off-Nadir Angle (deg.) 
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 Next Steps: Add LEO Data in Network Solutions 

•  Adding GRACE to the 40-station 
ground network significantly 
improves TRF. 

•  Reduced systematic errors at the 
draconitic harmonics. 

•  Particularly for the Z component 
of the geocenter. 

•  Candidate missions include T/P, 
Jason 1/2 and CHAMP. 

From Haines et al. 2011, Fall AGU 

Time Series of ΔZ Origin (vs. IGS08) 

Periodogram of ΔZ Origin (vs. IGS08) 
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Summary 

•  New TRF realization from GPS alone 
•  Spans nearly 18 years (1994–2012) and includes all (5) GPS satellite blocks. 
•  Uses LEO-referenced GPS s/c APV models that are independent of frame. 
•  Uses long (9-d) arc solution strategy. 

•  Scale stability of 0.2 mm yr-1 vs. ITRF2008IGS08 (1994–2012)  
•  Scale offset ~2 ppb (~1 cm) sensitive to ant. calibrations & unmodeled multipath. 

•  3D origin stability of 0.7 mm yr-1 (cf., Collilieux et al., 2010) 
•  But some non-linear patterns (esp. in Y & Z). 
•  May include actual (secular) geocenter motion in addition to frame error. 

•  3D origin offset of 9 mm  
•  Excellent overall agreement with ITRF2008IGS08  

•  Consistent with estimated errors for state-of-the-art TRF (e.g., Altamimi et al., 2011, 
Wu et al, 2011; Argus, 2012). 

•  Exception is scale offset. 

•  Future plans: 
•  Incorporate models for antenna group-delay variations (for pseudorange data). 
•  Systematically incorporate LEO data in network solutions. 
•  Continue investigations of scale bias (e.g., new ground/test range measurements). 
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Scale Bias: Impact of Antenna Model Pairings 

Reference Antenna 
for Transmitter 

APV 

Ground 
Antenna 

APV 

Year No. of 
Weekly 
Solns. 

Δ Scale vs. 
IGS08 

σ (mm)	

 Mean 
(mm) 

TOPEX1  Test Range1 2004 12 1.1 –19 

TOPEX1  Test Range1 2010 45 1.8 –17 

TOPEX smoothed Test Range1 2010 45 1.8 –12 

TOPEX1 Robot2 2004 12 1.0 +10 

TOPEX smoothed Robot2 2010 45 1.7 +17 

1 Dunn and Young (1992) 
2 Wübbena et al. (2000) 
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•  Choice of ground antenna calibration model (test range vs. robot) 
impacts scale by ~3 cm (> 4 ppb). 
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