IGS08:

Elaboration, consequences and maintenance of the IGS realization of ITRF2008

Paul Rebischung¹, Bruno Garayt², Ralf Schmid³, Jim Ray⁴, Xavier Collilieux¹

All IGS ACs are gratefully acknowledged for their contribution to the elaboration of IGS08 and igs08.atx.

¹ Institut Géographique National / Laboratoire de Recherche en Géodésie, France

- ² Institut Géographique National / Service de Géodésie et Nivellement, France
- ³ Technische Universität München, Germany
- ⁴ National Oceanic and Atmospheric Administration / National Geodetic Survey, USA

EGU General Assembly, Vienna, 03-08 April 2011

History of IGS reference frames

- Since 2000, the IGS has used its own realizations of the successive ITRFs as reference for its products.
- A new reference frame (RF) based on ITRF2008, **IGS08**, will be adopted as of week 1632 (17 April 2011).

Number of RF stations available in operational solutions

Elaboration of IGS08

- Initially intended to be a subset of « good » GNSS stations from ITRF2008 (Their actual positions should remain close to the ITRF2008 linear model.)
- A selection was made based on the ITRF2008 results:

-	Data span	(> 5 yr)
-	Maximum time span between two discontinuities	(> 3 yr)
-	Number of discontinuities	(< 5)
-	Absence of velocity discontinuities	
-	Standard deviation of velocity	(< 0.3 mm/yr)
-	Residual time series	(RMS + visual inspection)

- When possible, preference was given to stations with special equipment:
 - Robot-calibrated antennas
 - GPS+GLONASS capability
 - External atomic clock
 - Co-location with other techniques

Selection result

Full IGS08 network: 232 stations; global coverage, but heterogeneous density

Ground antenna calibration updates

- An updated set of antenna calibrations, **igs08.atx**, will be adopted together with IGS08.
 - 15 new robot calibrations (+9 copies for similar antenna types)
 - 46 updated robot calibrations
 - All converted calibrations updated
 - ... (more in IGSMAIL-6355)

Implication for IGS08:

- ITRF2008 made indirect use of the igs05.atx calibrations.
- But **IGS08** has to be consistent with the latest **igs08.atx** calibrations.
- Stations affected by calibration updates should either be dropped from IGS08 or have their ITRF2008 coordinates corrected.
- Remark:
 - The same problem had to be solved with the transition from (ITRF2005; relative calibrations) to (IGS05; absolute calibrations).
 - Differences are much smaller from (ITRF2008; igs05.atx) to (IGS08; igs08.atx).
 - Future convergence of ground antenna calibrations is expected but uncertain.

180°

Ground antenna calibration updates

ALRT (ASH701945C M

NONE)

-20 mm

- Impact on IGS08 station coordinates assessed by:
 - PPP tests (IGN, ESA, CNES)
 - Parallel solutions from 8 Analysis Centers

Good overall agreement

(Although fixing ambiguities has a noticeable impact for some antenna types.)

Shifts estimated from PPP tests and parallel AC solutions

Ground antenna calibration updates

- Corrections derived from the IGN PPP tests were finally applied to the ITRF2008 coordinates of 65 stations (87 different time spans).
- IGS08 was **NOT** re-aligned to ITRF2008.

$IGS05 \rightarrow IGS08$ transformation

Total transformation =

Global Helmert transformation due to the ITRF2005 \rightarrow ITRF2008 datum change (1)

+ Station-specific corrections due to ground antenna calibration updates

(2)

- IGS05 \rightarrow IGS08 transformation parameters estimated using 118 stations:
 - *** These parameters only describe part (1) of the total transformation. ***

 (A version of IGS08 in which coordinate corrections had NOT been applied was used.)
 - ITRF2005 \rightarrow ITRF2008 transformation parameters are given in blue for comparison.

Transformation	TX	TY	TZ	SC	RX	RY	RZ
	(mm)	(mm)	(mm)	(ppb)	(mas)	(mas)	(mas)
parameters at	1.5	-0.0	5.8	-1.04	-0.012	0.014	0.014
epoch 2005.0	0.5	0.9	4.7	-0.94	0.000	0.000	0.000
+/-	0.2	0.2	0.2	0.04	0.009	0.009	0.010
Rates of	dTX	dTY	dTZ	dSC	dRX	dRY	dRZ
	(mm/y)	(mm/y)	(mm/y)	(ppb/y)	(mas/y)	(mas/y)	(mas/y)
Rates of transformation parameters	dTX (mm/y) -0.1 -0.3	dTY (mm/y) -0.0 0.0	dTZ (mm/y) -0.1 0.0	dSC (ppb/y) 0.01 0.00	dRX (mas/y) -0.002 0.000	dRY (mas/y) -0.003 0.000	dRZ (mas/y) 0.001 0.000

$\text{IGS05} \rightarrow \text{IGS08}$: Advice to users

- How to transform results from the (IGS05; igs05.atx) framework to the (IGS08; igs08.atx) framework?
- Because of the ground antenna calibration updates, a direct Helmert alignment to IGS08 is not appropriate.
- Proposed method:
 - 1) Correct station positions to account for the calibration updates
 - Latitude-dependent models for the impact of calibration updates on station coordinates are available.
 - Perl scripts from J. Griffiths can be used to compute and apply corrections from these models.
 - More in IGSMAIL-6356
 - 2) Helmert alignment to IGS08

NONE

ASH700228E

Satellite antenna calibration updates

Computation of new satellite z-PCOs was necessary because of:

- the -1 ppb scale difference between IGS08 and IGS05,
- the correlation between satellite z-PCOs and the terrestrial scale.
- GLONASS PCVs were re-estimated. (But GPS PCVs are unchanged.)
- Procedure for GPS:
 - Reprocessed SINEX solutions from 5 ACs
 - Remove constraints
 - Apply constraints in scale, origin and orientation wrt ITRF2008
 - Weighted average over time and ACs
- Procedure for GLONASS:
 - Reprocessed GNSS solutions from CODE and ESA
 - Re-estimation of z-PCOs and PCVs
 - Solutions aligned to IGS08
 - GPS satellite antenna corrections kept fixed

Estimated Z-PCOs for satellite G047

IGS08 core network

• Motivation:

- When stacking global solutions aligned to an inhomogeneous RF, parts of the geophysical or local signals are absorbed by the Helmert transformation parameters.
- \Rightarrow Station-dependent annual signals can be reduced/amplified and/or shifted.
- This aliasing can be reduced by using a well-distributed RF. (Collilieux et al., 2010)
- IGS08 core network = well-distributed sub-network of IGS08
 - 91 primary stations
 - Up to 4 substitute stations for each primary station
- Recommended for any alignment of a global solution to IGS08
- Will be used to align the IGS weekly combined solutions

IGS08 core network

The 91 primary stations of the IGS08 core network

IGS08 core network

IGS08 decay

- Many IGS08 stations were subjected to discontinuities since 2009.5.
- Week 1627 (19 March 2011):
 - 153 / 232 usable IGS08 stations (see map)
 - 65 / 91 usable core stations
- Rate of loss seems to accelerate.

Number of IGS08 stations per solution

Number of IGS08 core stations per solution

Proposal for IGS08 updates

- To avoid a future crisis situation for the IGS products, it will probably be necessary to consider regular updates of IGS08 before the next ITRF release.
- Suggestion to overcome discontinuities:
 - Some months after a discontinuity occurred, compute an offset using the IGS cumulative solution:

dX = X_{after}(IGS cum.) - X_{before}(IGS cum.)

- Introduce post-discontinuity coordinates in IGS08 using this offset:

 $X_{after}(IGS08) = X_{before}(IGS08) + dX$

- Only applicable if velocity is unchanged (no post-seismic deformation).
- Suggestion to overcome station substitutions:
 - When an old station is eventually decommissioned after having run several years in parallel with a new station at the same site, compute a « local tie » using the IGS cumulative solution:

dX = X_{new}(IGS cum.) - X_{old}(IGS cum.)

- Introduce the new station in IGS08 using this « local tie »:

 $X_{new}(IGS08) = X_{old}(IGS08) + dX$

- Only applicable if velocities are identical.
- In the IGS08 covariance matrix, new off-diagonal terms would be zero. But are they used by anyone?

Thanks for your attention!

EGU General Assembly, Vienna, 03-08 April 2011