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Abstract The atmosphere induces variations in Earth rota-
tion. These effects are classically computed using the “angu-
lar momentum approach”. In this method, the variations in
Earth rotation are estimated from the variations in the atmo-
spheric angular momentum (AAM). Several AAM time-series
are available from different meteorological centers. However,
the estimation of atmospheric effects on Earth rotation differs
when using one atmospheric model or the other. The purpose
of this work is to build an objective criterion that justifies
the use of one series in particular. Because the atmosphere is
not the only cause of Earth rotation variations, this criterion
cannot rely only on a comparison of AAM series with geo-
detic data. Instead, we determine the quality of each series
by making an estimation of their noise level, using a gener-
alized formulation of the “three-cornered hat method”. We
show the existence of a link between the noise of the AAM
series and their correlation with geodetic data: a noisy series
is usually less correlated with Earth orientation data. As the
quality of the series varies in time, we construct a combined
AAM series, using time-dependent weights chosen so that
the noise level of the combined series is minimal. To deter-
mine the influence of a minimal noise level on the correlation
with geodetic data, we compute the correlation between the
combined series and Earth orientation data. We note that the
combined series is always amongst the best correlated series,
which confirms the link established before. The quality crite-
rion, while totally independent of Earth orientation observa-
tions, appears to be physically convincing when atmospheric
and geodetic data are compared.

Keywords Earth rotation · Atmospheric angular
momentum · Data combination · Three-cornered hat method

L. Koot (B) · O. de Viron · V. Dehant
Royal Observatory of Belgium,
Avenue Circulaire 3,
1180 Brussels, Belgium
E-mail: laurence.koot@oma.be
Tel.: +32-2-3730625
Fax: +32-2-3749822

1 Introduction

The rotational motion of the Earth is not regular. Fluctuations
are due to the presence of the Moon, the Sun and, to a lesser
extent, the other planets, which apply a gravitational torque
on the Earth’s equatorial bulge. On the other hand, large-scale
variations in the distribution of masses in the external fluid
layers (the atmosphere and oceans) also induce variations in
Earth rotation (e.g., Barnes et al. 1983; Gross et al. 2003). In
addition, the response of the Earth to these external forcings
is influenced by its internal constitution.

The variations in Earth rotation are divided among three
different motions: the nutation and the polar motion, which
together contain all the variations in the direction of the rota-
tion axis, and the length-of-day (LOD) variations, which oc-
cur because of rotational speed fluctuations. Nutations are de-
fined as the retrograde quasi-diurnal variations (from −1.5 to
−0.5 cycles per sideral day) in the terrestrial reference frame
(TRF) and are treated, by convention, in the celestial refer-
ence frame (CRF), where they have periods greater than two
days. The polar motion is defined from the TRF and contains
all the variations with frequencies that are not in the retro-
grade quasi-diurnal band [see, e.g., Brzezinski (1992) for an
explanation of the conventional separation between nutation
and polar motion].

Because the motions of the Moon, Sun and planets are
mostly periodic, with periods greater than a few days in the
CRF, their gravitational torque mainly gives rise to nutations,
and they nearly have no effect on polar motion. On the other
hand, the main motions of the masses in the oceans and atmo-
sphere have long periods (e.g., annual and semi-annual) in
the TRF, and create the polar motion. The atmosphere and
oceans also induce variations in the LOD.

This paper is concerned with the estimation of atmo-
spheric effects on polar motion and LOD. These can be com-
puted with two equivalent methods. The first one consists
in estimating the torques produced by the atmosphere act-
ing on the Earth and is called the “torque approach” (e.g.,
Barnes et al. 1983, de Viron et al. 2005). The second method,
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classically used, is the “angular momentum approach” (for
recent papers using this method, see e.g. Kouba and Vondrák
2005, Kouba 2005). This method considers that, as far as the
atmospheric effects on Earth rotation are concerned, the com-
bined solid Earth/atmosphere system is isolated. Its angular
momentum is thus conserved so that variations in the Earth
angular momentum are associated with opposite variations
in the atmospheric angular momentum (AAM).

In order to evaluate atmospheric effects on Earth rotation,
one generally uses the effective AAM (EAAM) functions,
also called atmospheric excitation functions, introduced by
Barnes et al. (1983), rather than the AAM themselves. Both
represent essentially the same information, except for a scal-
ing factor: the EAAM are obtained from the AAM by convo-
lution of a transfer function accounting for the non-rigidity
of the Earth. Because the atmosphere induces variations in
Earth rotation by an exchange of angular momentum, com-
parison (and in particular the correlation) of the EAAM series
with their geodetic equivalent leads to an estimation of the
atmospheric effects on Earth rotation.

The atmospheric excitation functions are commonly split
into two parts: the first one represents a rigid rotation of the
atmosphere with the Earth and is called the “pressure term”,
and the second one is the angular momentum due to the mo-
tions in the atmosphere relative to the Earth and is called the
“wind term”.

Several meteorological centers run their models, devel-
oped in the context of weather forecasting, to compute their
EAAM time-series. The International Earth Rotation and
Reference Systems Service (IERS) Special Bureau for the
Atmosphere (Salstein et al. 1993) provides the data com-
ing from five meteorological analyses: the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), the
United Kingdom Meteorological Office (UKMO), the Jap-
anese Meteorological Agency (JMA), the National Center
for Environmental Prediction (NCEP), and the National Cen-
ter for Environmental Prediction/ National Center for Atmo-
spheric Research (NCEP/NCAR) reanalysis. Unfortunately,
as we show in Sect. 4, when the correlation between the atmo-
spheric excitation, provided by these centers, and geodetic
data is computed, the results differ from one atmospheric
model to another. The estimation of atmospheric effects on
Earth rotation thus depends on the atmospheric series chosen.

Until now, the choice of one series in particular relies only
on technical criteria, like the length of the time-series or the
regularity of its sampling, which imply that the NCEP/NCAR
reanalysis time-series is often used (e.g., Nastula and Sal-
stein 1999; Kolaczek et al. 2003). It must be noted that the
NCEP/NCAR, as a reanalysis, is more consistent over a long
time period than the other analyses. This model is also used
when the ocean is part of the study, because it is necessary to
work with the same atmospheric model as the one used for the
ocean forcing, which is most of the time the NCEP/NCAR
reanalysis (e.g., Gross et al. 2003).

However, as far as we know, no studies has shown that the
NCEP/NCAR reanalysis series has the best quality, so that,
until now, the choice to work with this series is completely

arbitrary. It thus seems necessary to find an objective criterion
to either justify the use of the reanalysis series or determine
which other one should be used. This is the purpose of this
paper.

2 Problem definition

At first glance, one could think that the atmospheric series
that has the best quality should be the one that best explains
the variations in Earth rotation and thus is the better corre-
lated with geodetic observations. However, the atmosphere is
not the only cause of Earth rotation variations (the oceans and
hydrology also play a role). A better correlation of one atmo-
spheric series with the Earth orientation observations does
not necessarily imply that the series has a better quality: the
better correlated series might overestimate the atmospheric
effect, which makes the overall budget worse when the oceans
and hydrology are taken into account.

In order to consistently compare the atmospheric and
Earth rotation observations, the effects of the oceans and
hydrology must be subtracted from the geodetic observations
and the atmospheric data must be compared to the residu-
als. However, we did not make this kind of residual analy-
sis for several reasons. The main reason is that the oceanic
models are not independent of the atmospheric models, the
latter being used as input forcing. To make a meaningful
residual analysis, the AAM time-series should be compared
to the geodetic observations from which the oceanic angu-
lar momentum from an oceanic model forced by the corre-
sponding atmospheric model would have been subtracted.
The problem is that, for several atmospheric models, no oce-
anic model forced by them exists, with most of the oceanic
models being forced by the NCEP/NCAR reanalysis data. If
an oceanic model forced by the NCEP/NCAR reanalysis is
used, the atmospheric series that will best explain the resid-
uals would likely be the NCEP/NCAR reanalysis and this
method will thus not be objective.

Another reason is that, presently, the quality of the mod-
eling of these fluids is such that adding the ocean contribu-
tion does not completely remove the discrepancies between
the observations of Earth rotation and the joint effects of
the atmosphere and ocean (e.g., Gross et al. 2003). In some
cases, subtracting the contribution of the geodetic observa-
tions from the ocean observations even increases the variance
of the residuals (Holme and de Viron 2005).

In this work, we propose an alternative approach that does
not rely on a comparison with Earth orientation data. We pro-
pose to determine the quality of the AAM series by making
a comparison of the series with each other. For this purpose,
we use the so-called “three-cornered hat” method, developed
in the context of the characterization of frequency standard
stability (Gray and Allan 1974). When at least three time-
series of the same process are available, this method pro-
vides an estimation of their individual noise level. Its main
interest is that, unlike other classical methods (e.g., weighted
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Table 1 Atmospheric angular momentum (AAM) data for different models

Model Covered period Sampling period (h) Missing data (%)

ECMWF 1/1/1988–4/1/2000 6 13

UKMO 27/11/1986–4/1/2000 6 8

JMA 1/4/1993–30/12/2000 6 4

NCEP 1/7/1976–13/3/1997 24 7

22/4/1997–4/1/2000 6

NCEP/NCAR reanalysis 1/1/1948–31/8/2003 6 0

least-squares, Kalman filter, etc.), it gives information about
the noise without making any assumption about the signal
statistics.

However, the three-cornered hat method, in its classical
formulation, has some limitations: it makes the hypothesis
that there is no correlation between the noise of the series,
which can lead to meaningless results. To avoid these prob-
lems, we use a generalized formulation of the method which
takes the correlations into account. This generalization was
first proposed by Tavella and Premoli (1991) and then fur-
ther developed by Premoli and Tavella (1993), Tavella and
Premoli (1994) and Galindo et al. (2001).

As we will show, the noise level of the series, estimated
with the generalized three-cornered hat method, varies with
time to a very large extent. None of the series has always
the lowest noise level. This provides the motivation to gener-
ate a series by combination of the five time-series available,
which would present, at each epoch, a noise level as low as
possible. The combined series allows us to take advantage of
the information included in each series, with the weight of a
series in the combination depending on its quality.

Such a combination of time-series with weights deter-
mined by the three-cornered hat method has already been
done for Earth orientation data (e.g., Gambis 2002), which
used the classical method of Gray and Allan (1974), and by
Chin et al. (2005), which used a generalized three-cornered
hat method, also taking the correlations into account, but
different from the one we use in this paper. The differences
between the methods are described in Sect. 5 of this paper.

3 Data used

3.1 Atmospheric data sets

The EAAM time-series are provided by the IERS Special
Bureau for the Atmosphere (SBA). Each series is obtained as
output of a particular meteorological model. The data coming
from five meteorological models (ECMWF, UKMO, JMA,
NCEP and the reanalysis made by the NCEP/NCAR centers)
that assimilate a variety of observations as input data, are
given separately for the wind and pressure terms and split
into the North and South Hemisphere contribution.

The pressure term is given both in the inverted barometer
(IB) and in the non-inverted barometer (NIB) approximations.

These two approximations describe two different simplified
reactions of the ocean under variations in atmospheric pres-
sure. The IB approximation assumes that the total pressure
on the oceanic floor is constant so that a larger atmospheric
pressure is compensated by a lower water level. This approx-
imation is known to be mostly valid at periods long enough
for the ocean mass to readjust (longer than a few days). The
second approximation (NIB) considers that the ocean is com-
pletely decoupled from the atmosphere so that it does not re-
act to the atmospheric pressure changes. This approximation
is mainly used when dealing with short-period variations in
the atmosphere. In this work, we focus on the long-period
variations so we will use only the IB version of the pressure
term.

The angular momentum is a vectorial quantity and is
given in terms of three spatial components: the Z -compo-
nent is directed along the mean principal axis of maximum
inertia, the X - and Y -components are in the equatorial plane,
the first one being in the direction of the Greenwich merid-
ian and the second one such as to complete the right-handed
triad. The period covered for each series as well as the sam-
pling period and the percentage of missing data are given in
Table 1.

We use the three-cornered hat method (Gray and Allan
1974; Tavella and Premoli 1991), which requires the avail-
ability of at least three different series at each time. We thus
use the data only in the period from 1988 to 2000. From 1
January 1988 to 1 April 1993, we deal with the four time-
series: ECMWF, UKMO, NCEP and NCEP/NCAR reanal-
ysis, while from 1 April 1993 to 1 January 2000, the JMA
data are used as well.

First we pre-processed the data as follows: because we
focus on the low frequencies (periods longer than one day),
we averaged the data over each day. Then, we had to correct
jumps (sharp changes in the mean) in the data. The jumps
are due to changes in the model used by the meteorological
centers, often being the ocean-bottom topography or the res-
olution. In order to use the three-cornered hat method, it is
important to correct them because the method relies on an
estimation of the variance of the series and such jumps give
rise to an increase in the variance, which will be interpreted
as an increase in the noise level. In this case, the correction
was quite easy because the jumps were so big that the high-
est value of the time series before the jump was lower than
the lowest value of the time series after the jump. We only
had to estimate the mean of the two parts of the series and
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Fig. 1 Time-variation of the correlation coefficient between the total atmospheric angular momentum (AAM) series (wind + IB-pressure terms)
and Earth orientation data

subtract it. Lastly, we removed a trend in the time series with
a moving average technique.

3.2 Geodetic data sets

Several Earth orientation data series are available. Those se-
ries result from various combinations of the data obtained
with different techniques of Earth orientation measurement.
The data series used in this paper is the COMB2002 se-
ries developed by Gross (2003). This series is the result of
the combination of data obtained from the following tech-
niques of Earth orientation measurement: laser ranging to
the Moon or artificial satellites, very long baseline interfer-
ometry (VLBI), and the global positioning system (GPS).
These series were combined using the Kalman filter method.
The data are sampled with a period of 1 day and there are no
missing data.

4 Correlation between atmospheric and geodetic data

In order to estimate the atmospheric effects on Earth rotation,
atmospheric data are compared to Earth orientation data using
the relation (Brzezinski 1992; Gross 1992):

p(t) + i

σ0

dp
dt

= χ(t), (1)

where p(t) is the Earth orientation measurement (the position
of the celestial ephemeris pole), σ0 is the complex Chandler
frequency, i is the imaginary unit and χ is the EAAM. The
left-hand side of Eq. (1) is sometimes called the “geodetic
excitation”. In the following, we use the acronym AAM in
the place of EAAM.

In order to get a first comparison between the AAM series,
we estimated the correlation coefficient between the total
AAM, wind plus IB-pressure terms, and the geodetic excita-
tion. The time variation was obtained using a time window
of 2 years moving by 3 months. The results are presented in
Fig. 1.

The correlation level is very different for the three spa-
tial components. The correlation is of about 97% for the
Z -component, while only 70 and 45% for Y - and X -com-
ponent, respectively. This can be explained by the fact that
for the Z -component, the atmosphere is the main cause of
variations in the angular momentum of the Earth, while for
the X - and Y -components, the ocean plays an important role.
To generate variations in the angular momentum of the Earth
in a particular direction, there must be displacements of mat-
ter or changes in the surface pressure in a plane perpendicular
to this direction. For the Z -component, the variations in the
angular momentum are due to variations in the direction of the
parallels. In the atmosphere, such motions are generated by
the zonal winds, which dominate the atmospheric circulation,
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while in the ocean, the continents are barriers to large global
scale motions in this direction.

The variations in the X - and Y -components are due to
displacements between the North- and South-pole, motions
that occur in the ocean water, as well as in the atmosphere;
explaining the importance of the oceans in polar motion exci-
tation. The difference in the correlation between the X - and
Y -components can be explained by the fact that for the X -
component, the AAM has roughly the same amplitude as the
oceanic angular momentum (OAM), while for the Y -compo-
nent, the amplitude of the AAM is very much greater than
the OAM. This explains why the correlation for the AAM
only with Earth orientation data is greater for Y than for X .

The main interest of Fig. 1 for our study is that it shows
the differences between the atmospheric analyses and their
impact on the estimation of atmospheric effects on Earth rota-
tion. In 1991, for example, the NCEP model gives a correla-
tion of about 35 % for the X-component while 50% is obtained
from the NCEP/NCAR reanalysis series. These discrepancies
between the different meteorological models are the motiva-
tion of our work.

5 The three-cornered hat method

To determine the quality of the AAM series, we have to esti-
mate their noise levels. Because the atmospheric processes
are complex, no stochastic modeling of their noise level has
been made, so that we choose to use the three-cornered hat
method which allows an estimation of the noise level of the
series only by comparing them against each other.

From a mathematical point of view, if {Xi }i=1,...,N are N
time series, the three-cornered hat method splits them into
two terms:

Xi = S + εi , ∀i = 1, . . . , N , (2)

where S is defined as the part of the series that is common
to all of them and εi is what remains, i.e., the part particular
to the given series. With this definition, the three-cornered
hat method relies on an important hypothesis, which states
that S is the signal and εi is the noise. Using this hypothe-
sis, information about the noises can be obtained by taking
differences between the series.

The three-cornered hat method allows an estimation of
the variance of the individual noise of each series, under
some assumptions on the correlations between those noises.
Different formulations of the three-cornered hat method are
used, depending on the assumptions made on the correlations
between the noises.

In the case of the AAM series used in this paper, the noise
is due to the differences in the modeling of the atmospheric
circulation from one meteorological center to the other. Al-
though each center works independently, the time series pro-
duced cannot be considered as uncorrelated: they mostly use
the same dynamical equations and the same data for assimi-
lation. However, we do not know how much the noises of the
series are correlated.

5.1 Classical method

The classical three-cornered hat method, introduced by Gray
and Allan (1974), relies on the assumption that the noises of
the series are not correlated. Although we do not expect that
the noises of the AAM series fulfill this condition, we briefly
present this method because it is the most commonly used
and it gives the basis to present the generalized method.

The classical method takes the difference between every
set of two series and then calculates their variance. For three
time-series, under the assumption that the noises of the series
are not correlated, we get the linear system:





Var(X1−X2)=Var(ε1 − ε2)=Var(ε1)+Var(ε2)

Var(X1−X3)=Var(ε1 − ε3)=Var(ε1)+Var(ε3)

Var(X2−X3)=Var(ε2 − ε3)=Var(ε2)+Var(ε3)

(3)

as the covariances have been assumed to be zero. Solving
this system then gives an estimate of the individual noise
variances. When more than three time series are available,
the linear system in Eq. (3) is overdetermined and can be
solved by a least-squares method, for instance.

However, this classical method sometimes gives mean-
ingless results: the estimated variances can become nega-
tive. An overdetermined system, giving rise to an inconsis-
tent result, is an indication that the problem is ill-formulated
(mainly because of the assumption that the noises are not
correlated).

5.2 Generalized method

A generalized method, which does not make the assumption
of zero correlation, has been developed by Tavella and Pre-
moli (1991, 1994), Premoli and Tavella (1993) and Galindo
et al. (2001). We present the key features of this method.

5.2.1 Statement of the problem

Let {Xi }i=1,...,N be a set of N time-series. We take the differ-
ence between each series and one of them, arbitrary chosen
as the reference:

Y i N ≡ Xi − X N = εi − εN , i = 1, . . . , N − 1, (4)

where X N is the reference series. As demonstrated by Tavella
and Premoli (1994), the results are independent of the choice
of one series or another. In the work presented here, because
it is the most often used series, we take the NCEP/NCAR
reanalysis series as reference.

The covariance matrix of the series of differences is then
computed:

Di j ≡ Cov(Y i N , Y j N ), i, j = 1, . . . , N − 1. (5)

Because of the bilinearity property of the covariance, this
matrix can be expressed by:

Di j = Ri j − Ri N − R j N + RN N , i, j = 1, . . . , N − 1,

(6)
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where we have introduced the N × N covariance matrix of
the individual noises Ri j = Cov(εi , ε j ) of which the ele-
ments are the unknowns of the problem. The matrices R and
D, being real and symmetric by definition, the number of in-
dependant parameters is N (N +1)/2 for R and (N −1)N/2
for D. Equation (6) is underdetermined with (N − 1)N/2
equations and (N + 1)N/2 unknowns. It thus has N free
parameters that we can choose to be R1N , . . . , RN N , i.e., the
covariances between the noise of each series and the noise
of the reference series, and in terms of which the solution for
the other unknowns is given by:

Ri j = Di j + Ri N + R j N − RN N , i, j = 1, . . . , N − 1.

(7)

5.2.2 Choice of the free parameters

An important constraint on the solution domain for the free
parameters is that the estimated covariance matrix R must be
definite positive. Tavella and Premoli (1994) showed that this
condition is satisfied if and only if its determinant is strictly
positive:

Det(R) > 0. (8)

This condition restricts the solution domain for the free param-
eters, but is not sufficient to determine them.

To fix the value of those parameters, an hypothesis on the
correlations is introduced: while the classical method made
the hypothesis of uncorrelated series, the generalized method
assumes that the right solution is the one with the small-
est correlation between the noises of the different series (as
small as the constraint on the solution domain allows it). The
parameters are thus chosen in such a way that the sum of the
estimated correlations between all the time series is minimal,
taking the constraint in Eq. (8) on the solution domain into
account.

Using this generalized method, we implicitly make the
assumption that the time series are only poorly correlated.
Mathematically, the constraint on the correlations comes to
numerically minimize the following objective function:

F(R1N , . . . , RN N )

=
N∑

i< j

[Ri j (R1N , . . . , RN N )]2

[Ri i (R1N , . . . , RN N )][R j j (R1N , . . . , RN N )] . (9)

A description of the algorithm used for the minimization can
be found in Galindo et al. (2001). When the free parameters
have been estimated, the R matrix is completely determined
by Eq. (7).

In Galindo et al. (2001), the method was tested on sim-
ulated data. It took two sets of four time-series, poorly cor-
related for the first set and strongly correlated for the second
set, and computed the complete covariance matrix by taking
the differences between their time-series and then using the
generalized three-cornered hat method. This matrix was then
compared with the true covariance matrix estimated directly
from the simulated data to test the quality of the estimation by

the generalized three-cornered hat method. The results were
that, for the poorly correlated set, the estimation of the vari-
ances was quite good while the covariances, which are very
small relative to the variances, were always underestimated.
For the strongly correlated data set, both the variances and
the covariances were largely underestimated, which verifies
that this method cannot be used when the hypothesis of low
correlation is not fulfilled. This generalized method allows a
good estimation of the variances of weakly correlated time
series but not of their covariances.

Because the noises of the AAM time series are correlated,
we did not use the classical method but rather the generalized
method just described. However, using this method, we make
the assumption that the correlations between the noises of the
AAM series are low.

5.3 Other generalized methods

Another generalized method has been used by Chin et al.
(2005). Their method relies on another hypothesis on the cor-
relations between the noises. To solve the underdetermined
system in Eq. (6), they make the assumption that at least N
correlations are zero. This assumption makes sense in their
work, where they combine Earth orientation parameters from
different measurement techniques: they assume that the series
from different techniques are uncorrelated, while keeping the
correlation of the series obtained from the same technique.
With the AAM data used in our paper, we cannot assume
that some series are uncorrelated. As such, the generalized
technique of Chin et al. (2005) cannot be used in this paper.

6 Noise-level estimation

With the generalized three-cornered hat method, we deter-
mine the individual noise variance of the series produced by
the five centers for the three spatial components of the AAM,
separately for the wind and IB-pressure terms and for the sum
of these two terms (the total excitation function). In order to
obtain the noise variances as a function of time, we use a
moving-window technique. We choose a 2-year length win-
dow. After some tests on the time step by which the window
is moved, we found that 3 months are sufficient to obtain the
main variabilities during the year. Our results are presented
in Figs. 2, 3 and 4.

The noise variance of a time series gives some indica-
tion of its quality because it reflects the noise level of the
series. We can thus interpret our results in terms of quality: a
high-quality time-series will have a low noise variance. How-
ever, the method we used does not allow an estimation of the
absolute noise level of one series in particular, the results
only make sense when all the series are considered together,
the noise levels estimated are relative; they have no physical
meaning by themselves.

As we can see in Figs. 2, 3 and 4, the relative quali-
ties of the series are variable in time and we cannot decide
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Fig. 2 Noise variance of the AAM series, X -component

from these results which series must be used because none of
them has the lowest noise level for all times. Moreover, some
series that are quite good during certain periods can suddenly
become one order of magnitude worse than the others. We
also notice that the noise variance is different for the wind
and pressure term.

We want to determine whether the noise level of an AAM
series has an influence on its correlation with geodetic data.
For this purpose, we compare Fig. 1, representing the corre-
lation of each AAM series with Earth orientation data, and
Figs. 2, 3 and 4. In Figs. 2, 3 and 4, only the third plot,
showing the noise level of the total excitation function, must
be considered. By comparing Fig. 1 with Figs. 2, 3 and 4,
we notice that there seems to be a link between a high noise
level in the AAM time series and a low correlation coefficient
with Earth orientation data. It can be clearly seen on a few
examples, like the NCEP series before 1992 for the X - and
Y -components, the ECMWF series between 1994 and 1997
for the three components (but especially for the Y -compo-
nent), and the UKMO series after 1997 for the Y -component
and before 1992 for the Z -component.

More quantitatively, we compute the correlation coeffi-
cient between the noise variance of the AAM series (shown
on the third plot of Figs. 2, 3 and 4) and their time-variable
correlation with geodetic data (shown in Fig. 1). The corre-
lation coefficients are given in Table 2. Coefficients in bold

fonts are significant at least at the 95% level. Most of them
are negative, indicating that a higher noise level in the AAM
series coincides with a lower correlation. This is not surpris-
ing and validates our estimation of the noise level.

We conclude that the correlation of an AAM series with
Earth orientation data is very often related to its noise vari-
ance. When the noise variance of an AAM series increases, in
most of the cases, its correlation with geodetic data decreases,
which indicates that the method we propose is physically con-
sistent.

7 A combined AAM time series

As we showed in Sect. 6, the noise level of the AAM series
varies so much in time that we cannot decide which series
should be used. To solve this problem, we make a combina-
tion of the AAM series, taking their quality into account, such
that the combined series has a noise level as low as possible.

From the mathematical point of view, we want to create
a time-series X (t) by combination of the five existing ones
{Xi }i=1,...,5:

X (t) =
5∑

i=1

wi (t)Xi (t), (10)
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Fig. 3 Noise variance of the AAM series, Y -component

where wi (t) is the time-dependant weight associated with
the Xi (t) series and reflecting its quality at that time. These
weights are normalized in such a way that

∑5
i=1 wi = 1.

We determine the weights by requiring that the noise vari-
ance of the combined series be minimal. Because the general-
ized three-cornered hat method assumes that the correlations
between the noises are low, we neglect these correlations in
the calculation of the weights. This approximation is encour-
aged by the fact that the generalized method, as explained
before, does not give a good estimation for the correlations.

The condition of a minimal noise variance for the com-
bined series, together with the approximation that consists of
neglecting the correlations, gives the following normalized
weights as a solution:

wi =
1

Var(εi )

5∑

j=1

1
Var(ε j )

. (11)

The weight associated with a time series is inversely propor-
tional to its noise variance. Strictly, this formula is valid only
for uncorrelated time series. By using it, we make an approx-
imation. In our computations, the correlations are taken into
account to get good estimations of the variances but their own
values, which are not reliable, are not used.

We make two different combinations of the AAM series.
For the first one, we make a direct combination of the to-
tal excitation series. For the second one, we independently
combine the time series for the IB-pressure term and the time-
series for the wind term. These combined series for the wind
and pressure terms are then summed to form the new total
excitation series. The second combination method is more
satisfactory from the physical point of view because, as no-
ticed in Sect. 6, the noise variances are different for the wind
and pressure terms.

The combined series has, by design, a lower noise level
than each individual series. We want to determine the influ-
ence of a lower noise level in the AAM series on the cor-
relation with Earth orientation observations. Table 3 shows
the correlation coefficient between the atmospheric series and
the geodetic excitation. The combined series obtained from a
direct combination of the total atmospheric excitation are la-
beled “combined series” and those for which the IB-pressure
and wind terms were combined independently “combined
series PW”.

The combined series is well correlated with Earth ori-
entation data, thus confirming the link we established before
between the noise level and the correlation with geodetic data.
For the X -component, they are better correlated than the EC-
MWF, UKMO and NCEP series, but are less correlated than
JMA and NCEP/NCAR reanalysis series. However, for the
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Fig. 4 Noise variance of the AAM series, Z -component

Table 2 Correlation coefficients between the noise variance of the AAM series and their correlation with Earth orientation data

Model Correlation coefficient (%)
X -component Y -component Z -component

ECMWF 80 −37 −43
UKMO −78 11 −95
JMA 82 −13 −54
NCEP −65 −77 −81
NCEP/NCAR reanalysis −2 −40 −12

Bold fonts indicate the coefficients which are significant at least at the 95% level

Y - and Z -components, the combined series are slightly better
correlated. The high correlation between the combined AAM
series and the geodetic data indicates that our combination
technique, whereas based on purely statistical considerations,
is also physically meaningful, and that the combination does
not decrease the correlation with Earth orientation data.

The time variation of the correlation coefficient is rep-
resented in Figs. 5 and 6. The combined series present a
good correlation at each epoch; they are always amongst the
best correlated series. The combined series are very close
to the NCEP/NCAR reanalysis series. This suggests that, if
one of the five series had to be chosen, it should probably be
this one. This would also be encouraged by the fact that the
NCEP/NCAR reanalysis series has a rather low noise level.
We also note on Figs. 5 and 6 that the two kinds of combined
series present a similar correlation.

We make an additional comparison of the AAM series
with the Earth orientation observations by computing their
mean squared error (MSE). The results are shown in Table
4. The MSE is a measure of the distance between two series
so that the lower the MSE, the closer the AAM to the Earth
orientation series. By comparing Tables 3 and 4, we note that
they give the same information: when an AAM series is well
correlated to the geodetic data, the MSE is low.

8 Conclusions

The atmosphere exchanges angular momentum with the
solid Earth, perturbing its rotation. Several meteorological
centers provide AAM data. We compared the atmospheric
time series by computing their correlation with Earth
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Table 3 Mean correlation between atmospheric and geodetic excitation functions over the period from 1/4/1993 to 1/1/2000

Model Correlation coefficient (%)
X -component Y -component Z -component

ECMWF 46.57 72.59 97.29
UKMO 41.96 70.16 97.62
JMA 47.97 72.75 97.23
NCEP 42.91 73.74 95.40
NCEP/NCAR reanalysis 48.20 74.23 97.88
Combined series 46.57 74.51 98.02
Combined series PW 46.58 74.46 97.85
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Fig. 5 Time-variation of the correlation coefficient between the AAM series (including the combined series) and Earth orientation data for the
X - and Y -components

orientation data and showed the differences that occur from
one AAM series to the other.

Considering the differences between the atmospheric mod-
els, our purpose was to build a criterion that would allow a
less arbitrary choice of one AAM series. We built a quality
criterion independent of Earth orientation observations: we
estimated the noise level of the AAM series with a general-
ized three-cornered hat method.

We then compared the time variable noise level with the
correlation with the geodetic excitation. We made the follow-
ing conclusion: when the noise of an atmospheric series is
higher than the others, its correlation with the geodetic data
is usually lower. Our quality criterion, while being totally
independent, seems to be consistent with Earth orientation
data.

Because we showed that none of the series has the low-
est noise level for all times, we decided to construct a com-
bined series by making a weighted average of the existing
ones, the weights being chosen so that the series has a noise
variance as low as possible. We estimated a posteriori the
correlation between the combined series and Earth orien-
tation data to determine the influence of a minimal noise
level on the correlation with geodetic data. We noted that the
combined series presented a good correlation at each epoch.
Both ways of producing the time series (combination of the
total AAM series and combination of the pressure and wind
terms independently) are always close to the best correlated
series. We also showed that the individual combination of
the wind and pressure terms was not better than the direct
combination.
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Fig. 6 Time-variation of the correlation coefficient between the AAM series (including the combined series) and Earth orientation data for the
Z -component

Table 4 Mean squared error (MSE) between atmospheric and geodetic excitation functions over the period from 1/4/1993 to 1/1/2000

Model Mean squared error
X -component Y -component Z -component
(102mas2) (102mas2) (10−20)

ECMWF 15.4 14.9 110.8
UKMO 17.1 20.4 101.2
JMA 14.8 13.5 116.2
NCEP 17.3 13.8 179.2
NCEP/NCAR reanalysis 14.5 13.1 93.0
Combined series 14.7 13.7 84.3
Combined series PW 14.8 13.0 91.2

The advantage of using a combined series is that it of-
fers a time series with a good correlation with Earth orien-
tation for all times, while the individual series can present
a good correlation at certain time step and a bad correlation
at others. However, if a single time series must be chosen,
then the NCEP/NCAR reanalysis time series seems to be
the most appropriate because its noise is usually low and its
correlation to geodetic data is close to that of the combined
series.
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